Ding W, Ma K, Childress AE. Compaction of Pressure-Driven Water Treatment Membranes: Real-Time Quantification and Analysis.
ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024;
58:18404-18413. [PMID:
39360939 PMCID:
PMC11483730 DOI:
10.1021/acs.est.4c05865]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/16/2024]
Abstract
Water treatment membranes play crucial roles in applications such as desalination, wastewater treatment, and potable water reuse. In a prior study, we introduced a novel method, combining electrical impedance spectroscopy with dynamic mechanical analysis, to quantify single-layer homogeneous membrane compaction up to 12.5 psi. Now we extend the method's capabilities to quantify real-time compaction of multilayer heterogeneous nanofiltration and reverse osmosis (RO) membranes up to 330 psi. Our findings demonstrate that membrane compaction does not solely occur in the support/backing layer. The air pockets between the polysulfone support and the polyester backing layers, which were not discussed previously, account for up to 18% and 14% of total membrane compaction for the nanofiltration and RO membranes. For the nanofiltration membrane, the majority of compaction (up to 45%) occurs in the void spaces of the backing layer, while for the RO membrane, the majority of compaction (up to 40%) occurs in the solid material of the backing layer. We also confirm, with experimental results, the importance of using compressive testing instead of tensile testing to accurately characterize compaction. Membrane fatigue is characterized by experimental trends including: increasing irrevocable compaction, increasing creep/instantaneous compaction ratios, and increasing strains in hysteresis experiments.
Collapse