1
|
Abdullahi AA, Saleh TA. Synthesis of aminopropyl triethoxysilane/melamine incorporated superhydrophilic membranes for simultaneous removal of oil, metals, and Salt ions from produced water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121603. [PMID: 38963967 DOI: 10.1016/j.jenvman.2024.121603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/11/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
Water treatment has turned out to be more important in most societies due to the expansion of most economies and to advancement of industrialization. Developing efficient materials and technologies for water treatment is of high interest. Thin film nanocomposite membranes are regarded as the most effective membranes available for salts, hydrocarbon, and environmental pollutants removal. These membranes improve productivity while using less energy than conventional asymmetric membranes. Here, the polyvinylidene fluoride (PVDF) membranes have been successfully modified via dip single-step coating by silica-aminopropyl triethoxysilane/trimesic acid/melamine nanocomposite (Si-APTES-TA-MM). The developed membranes were evaluated for separating the emulsified oil/water mixture, the surface wettability of the membrane materials is therefore essential. During the conditioning step, that is when the freshwater was introduced, the prepared membrane reached a flux of about 27.77 L m-2 h-1. However, when the contaminated water was introduced, the flux reached 18 L m-2 h-1, alongside an applied pressure of 400 kPa. Interestingly, during the first 8 h of the filtration test, the membrane showed 90 % rejection for ions including Mg2+, and SO42- and ≈100 % for organic pollutants including pentane, isooctane, toluene, and hexadecane. Also, the membrane showed 98 % rejection for heavy metals including strontium, lead, and cobalt ions. As per the results, the membrane could be recommended as a promising candidate to be used for a mixture of salt ions, hydrocarbons, and mixtures of heavy metals from wastewater.
Collapse
Affiliation(s)
- Abbas A Abdullahi
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
2
|
Khalil A, Maschietti M, Muff J. Influence of graphene oxide additives on the NF separation of triazine-based H 2S scavenging compounds using advanced membrane technology. CHEMOSPHERE 2024; 360:142439. [PMID: 38797201 DOI: 10.1016/j.chemosphere.2024.142439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
This work proposes an innovative approach for the membrane separation of spent and unspent H2S scavengers (SUS) derived from the application of MEA-triazine in offshore oil and gas production. Modified nanofiltration membranes were fabricated by incorporating graphene oxide (GO) and polyvinyl alcohol (PVA) into a thin film composite (TFC) to obtain a thin film nanocomposite (TFN) with enhanced permeability. In addition, various immobilization strategies for GO were investigated. The performance of the membranes and the effect of the GO loading were evaluated in terms of permeability, fouling propensity, and rejection of key components of the SUS, i.e., MEA-triazine (unspent scavenger), dithiazine (spent scavenger), and monoethanolamine, operating on a sample of SUS wastewater obtained from an offshore oil and gas platform. Various characterization techniques, such as contact angle, FTIR, XRD, SEM, TGA, and AFM, were employed to evaluate the structure, composition, and hydrophilicity of the membrane. The results show a remarkable increase in permeability (from 0.22 Lm-2 h-1 bar-1 for the TFC to 5.8 Lm-2 h-1 bar-1 for the TFN membranes), due to the enhanced hydrophilicity from GO incorporation. The strong interfacial interaction between GO and PVA within the TFN membrane results in negligible nanofiller leaching. The incorporation of GO moderately increases the rejection of the unspent scavenger (63%-73%, 62%-79%, 62%-80%, and 68%-76%), while drastically increasing the rejection of the spent scavenger, which is approximately null for the TFC membrane without GO and increases up to 58% in the TFN membrane with GO. Therefore, while the proposed membranes cannot be used for the selective separation of the unspent form the spent scavenger, they can achieve substantial recovery of all the key components contained in the SUS to avoid their discharge into the sea.
Collapse
Affiliation(s)
- Alaa Khalil
- Section of Chemical Science and Engineering, Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark; Center for Membrane Technology, Aalborg University, Frederik Bajers Vej 7H, 9220, Aalborg Ø, Denmark.
| | - Marco Maschietti
- Section of Chemical Science and Engineering, Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | - Jens Muff
- Section of Chemical Science and Engineering, Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark; Center for Membrane Technology, Aalborg University, Frederik Bajers Vej 7H, 9220, Aalborg Ø, Denmark
| |
Collapse
|
3
|
Yu S, Li C, Zhao S, Chai M, Hou J, Lin R. Recent advances in the interfacial engineering of MOF-based mixed matrix membranes for gas separation. NANOSCALE 2024; 16:7716-7733. [PMID: 38536054 DOI: 10.1039/d4nr00096j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The membrane process stands as a promising and transformative technology for efficient gas separation due to its high energy efficiency, operational simplicity, low environmental impact, and easy up-and-down scaling. Metal-organic framework (MOF)-polymer mixed matrix membranes (MMMs) combine MOFs' superior gas-separation performance with polymers' processing versatility, offering the opportunity to address the limitations of pure polymer or inorganic membranes for large-scale integration. However, the incompatibility between the rigid MOFs and flexible polymer chains poses a challenge in MOF MMM fabrication, which can cause issues such as MOF agglomeration, sedimentation, and interfacial defects, substantially weakening membrane separation efficiency and mechanical properties, particularly gas separation. This review focuses on engineering MMMs' interfaces, detailing recent strategies for reducing interfacial defects, improving MOF dispersion, and enhancing MOF loading. Advanced characterisation techniques for understanding membrane properties, specifically the MOF-polymer interface, are outlined. Lastly, it explores the remaining challenges in MMM research and outlines potential future research directions.
Collapse
Affiliation(s)
- Shuwen Yu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Conger Li
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Shuke Zhao
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Milton Chai
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
4
|
Akbar Heidari A, Mahdavi H. Recent Advances in the Support Layer, Interlayer and Active Layer of TFC and TFN Organic Solvent Nanofiltration (OSN) Membranes: A Review. CHEM REC 2023:e202300189. [PMID: 37642266 DOI: 10.1002/tcr.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Although separation of solutes from organic solutions is considered a challenging process, it is inevitable in various chemical, petrochemical and pharmaceutical industries. OSN membranes are the heart of OSN technology that are widely utilized to separate various solutes and contaminants from organic solvents, which is now considered an emerging field. Hence, numerous studies have been attracted to this field to manufacture novel membranes with outstanding properties. Thin-film composite (TFC) and nanocomposite (TFN) membranes are two different classes of membranes that have been recently utilized for this purpose. TFC and TFN membranes are made up of similar layers, and the difference is the use of various nanoparticles in TFN membranes, which are classified into two types of porous and nonporous ones, for enhancing the permeate flux. This study aims to review recent advances in TFC and TFN membranes fabricated for organic solvent nanofiltration (OSN) applications. Here, we will first study the materials used to fabricate the support layer, not only the membranes which are not stable in organic solvents and require to be cross-linked, but also those which are inherently stable in harsh media and do not need any cross-linking step, and all of their advantages and disadvantages. Then, we will study the effects of fabricating different interlayers on the performance of the membranes, and the mechanisms of introducing an interlayer in the regulation of the PA structure. At the final step, we will study the type of monomers utilized for the fabrication of the active layer, the effect of surfactants in reducing the tension between the monomers and the membrane surface, and the type of nanoparticles used in the active layer of TFN membranes and their effects in enhancing the membrane separation performance.
Collapse
Affiliation(s)
- Ali Akbar Heidari
- School of Chemistry, College of Science, University of Tehran, 1417614411, Tehran, Iran E-mail: addresses
| | - Hossein Mahdavi
- School of Chemistry, College of Science, University of Tehran, 1417614411, Tehran, Iran E-mail: addresses
| |
Collapse
|
5
|
Zhao A, Zhang M, Bao Y, Zhao L, Liu G, Jiang Y, Zhang P, Cao X. Loose nanofiltration membrane constructed via interfacial polymerization using porous organic cage RCC3 for dye/salt separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Enhanced negative charge of polyamide thin-film nanocomposite reverse osmosis membrane modified with MIL-101(Cr)-Pyz-SO3H. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Liu Y, Wang K, Zhou Z, Wei X, Xia S, Wang XM, Xie YF, Huang X. Boosting the Performance of Nanofiltration Membranes in Removing Organic Micropollutants: Trade-Off Effect, Strategy Evaluation, and Prospective Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15220-15237. [PMID: 36330774 DOI: 10.1021/acs.est.2c06579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In view of the high risks brought about by organic micropollutants (OMPs), nanofiltration (NF) processes have been playing a vital role in advanced water and wastewater treatment, owing to the high membrane performance in rejection of OMPs, permeation of water, and passage of mineral salts. Though numerous studies have been devoted to evaluating and technically enhancing membrane performance in removing various OMPs, the trade-off effect between water permeance and water/OMP selectivity for state-of-the-art membranes remains far from being understood. Knowledge of this effect is significant for comparing and guiding membrane development works toward cost-efficient OMP removal. In this work, we comprehensively assessed the performance of 88 NF membranes, commercialized or newly developed, based on their water permeance and OMP rejection data published in the literature. The effectiveness and underlying mechanisms of various modification methods in tailoring properties and in turn performance of the mainstream polyamide (PA) thin-film composite (TFC) membranes were quantitatively analyzed. The trade-off effect was demonstrated by the abundant data from both experimental measurements and machine learning-based prediction. On this basis, the advancement of novel membranes was benchmarked by the performance upper-bound revealed by commercial membranes and lab-made PA membranes. We also assessed the potentials of current NF membranes in selectively separating OMPs from inorganic salts and identified the future research perspectives to achieve further enhancement in OMP removal and salt/OMP selectivity of NF membranes.
Collapse
Affiliation(s)
- Yanling Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Zixuan Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Xinxin Wei
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- Environmental Engineering Programs, The Pennsylvania State University, Middletown, Pennsylvania17057, United States
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| |
Collapse
|
8
|
Xiao S, Lu X, Liu H, Gu J, Yu S, Tan X. High-flux nanofiltration membrane with modified highly dispersed MOF particles as nano filler. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2642-2657. [PMID: 36450678 DOI: 10.2166/wst.2022.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The synthesis of optimized thin film nanocomposite (TFN) membrane with no or few defects is an efficacious method which can improve nanofiltration performance. However, poor dispersion of fillers in the organic phase and wrong compatibility between fillers and polymerizate are still a serious problem. In this study, the particle size of metal organic framework (MOF), aluminum-based metal-organic frameworks (CAU-1) was modulated and for the first time, dodecyl aldehyde was used to modify the surface hydrophobicity of CAU-1, which improved the dispersibility and inhibited the aggregation in the trimesoyl chloride (TMC)/n-hexane solution; later CAU-1 and modified CAU-1 were incorporated into the polyamide (PA) selective layer to synthesize TFN membrane by interfacial polymerization (IP). The particle size modulation and modification of the CAU-1 were demonstrated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) characterization. The characterization showed that PA selective layer was synthesized on the top layer of polysulfone (PSF) substrate. The pure water flux of the TFN membrane was increased to 79.89 ± 1.24 L·m-2·h-1·bar-1 compared to the original thin film composite (TFC) membrane, which was due to the polymerization of 100 nm modified CAU-1 on the PA layer to form a new water molecular channel, thus increasing the water flux by about 70%.
Collapse
Affiliation(s)
- Shujuan Xiao
- College of Material Science and Engineering, North China University of Science and Technology, Tangshan, Hebei 063210, China E-mail:
| | - Xiaohui Lu
- College of Material Science and Engineering, North China University of Science and Technology, Tangshan, Hebei 063210, China E-mail:
| | - Hui Liu
- College of Material Science and Engineering, North China University of Science and Technology, Tangshan, Hebei 063210, China E-mail:
| | - Jiantao Gu
- College of Science, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shouwu Yu
- College of Material Science and Engineering, North China University of Science and Technology, Tangshan, Hebei 063210, China E-mail:
| | - Xiaoyao Tan
- School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
9
|
He H, Xu P, Wang D, Zhou H, Chen C. Polyoxometalate-modified halloysite nanotubes-based thin-film nanocomposite membrane for efficient organic solvent nanofiltration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Wong KC, Goh PS, Ismail AF, Kang HS, Guo Q, Jiang X, Ma J. The State-of-the-Art Functionalized Nanomaterials for Carbon Dioxide Separation Membrane. MEMBRANES 2022; 12:186. [PMID: 35207107 PMCID: PMC8879035 DOI: 10.3390/membranes12020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023]
Abstract
Nanocomposite membrane (NCM) is deemed as a practical and green separation solution which has found application in various fields, due to its potential to delivery excellent separation performance economically. NCM is enabled by nanofiller, which comes in a wide range of geometries and chemical features. Despite numerous advantages offered by nanofiller incorporation, fabrication of NCM often met processing issues arising from incompatibility between inorganic nanofiller and polymeric membrane. Contemporary, functionalization of nanofiller which modify the surface properties of inorganic material using chemical agents is a viable approach and vigorously pursued to refine NCM processing and improve the odds of obtaining a defect-free high-performance membrane. This review highlights the recent progress on nanofiller functionalization employed in the fabrication of gas-separative NCMs. Apart from the different approaches used to obtain functionalized nanofiller (FN) with good dispersion in solvent and polymer matrix, this review discusses the implication of functionalization in altering the structure and chemical properties of nanofiller which favor interaction with specific gas species. These changes eventually led to the enhancement in the gas separation efficiency of NCMs. The most frequently used chemical agents are identified for each type of gas. Finally, the future perspective of gas-separative NCMs are highlighted.
Collapse
Affiliation(s)
- Kar Chun Wong
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Hooi Siang Kang
- Marine Technology Centre, Institute for Vehicle System & Engineering, School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Qingjie Guo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China; (Q.G.); (X.J.); (J.M.)
| | - Xiaoxia Jiang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China; (Q.G.); (X.J.); (J.M.)
- School of Mechanical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jingjing Ma
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China; (Q.G.); (X.J.); (J.M.)
| |
Collapse
|
11
|
Zhou H, Akram A, Semiao AJ, Malpass-Evans R, Lau CH, McKeown NB, Zhang W. Enhancement of performance and stability of thin-film nanocomposite membranes for organic solvent nanofiltration using hypercrosslinked polymer additives. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Wu X, Yang L, Shao W, Lu X, Liu X, Li M. Fabrication of high performance TFN membrane incorporated with graphene oxide via support-free interfacial polymerization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148503. [PMID: 34174601 DOI: 10.1016/j.scitotenv.2021.148503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
A high-performance thin film nanocomposite (TFN) membrane containing graphene oxide (GO) nanosheets was constructed using a support-free interfacial polymerization (SFIP) technique. In this study, an ultrathin composited polyamide (PA) nanofilm was synthesized at the free piperazine (PIP)-GO suspension/trimesoyl chloride (TMC) interface, followed by transfer onto a polysulfone (PSf) UF substrate. The impact of GO loading (0, 0.1, 0.5, or 1 mg/mL) on the physiochemical properties, surface morphology, and hydrophilicity of the composited PA layer and membrane separation performance was investigated. It was found that the GO-modified TFN membranes showed ultra-high hydrophilicity due to the increase in the number of carboxyl and hydroxyl groups in the PA layer. We propose that GO nanosheets play a key role in improving membrane permeability because a strong hydration layer is formed between the water molecules and GO (embedded in the PA layer), acting as a protective film and minimizing the chance of foulants contacting the membrane surface. Compared with TFC, TFN-GO-0.5 simultaneously exhibited a higher water permeability of up to 12.8 L·m-2·h-1·bar-1 (58.1% higher than the TFC membrane) and a higher Na2SO4 rejection of approximately 98.4%. Moreover, the introduction of GO nanosheets into TFN membrane resulted in an improved antifouling performance. This facile SFIP method reveals the potential of GO nanosheets for the development of high performance TFN membranes.
Collapse
Affiliation(s)
- Xiaona Wu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Lei Yang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenli Shao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xin Lu
- Petrochina North China Gas Marketing Company, Beijing 100011, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Xiao S, Huo X, Tong Y, Cheng C, Yu S, Tan X. Improvement of thin-film nanocomposite (TFN) membrane performance by CAU-1 with low charge and small size. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Xu C, Chen Y. Understanding water and solute transport in thin film nanocomposite membranes by resistance-in-series theory combined with Monte Carlo simulation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Le T, Chen X, Dong H, Tarpeh W, Perea-Cachero A, Coronas J, Martin SM, Mohammad M, Razmjou A, Esfahani AR, Koutahzadeh N, Cheng P, Kidambi PR, Esfahani MR. An Evolving Insight into Metal Organic Framework-Functionalized Membranes for Water and Wastewater Treatment and Resource Recovery. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00543] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tin Le
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Xi Chen
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-6104, United States
| | - Hang Dong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-6104, United States
| | - William Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-6104, United States
| | - Adelaida Perea-Cachero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50018, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Joaquín Coronas
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50018, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Stephen M. Martin
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Munirah Mohammad
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Amir Razmjou
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Amirsalar R. Esfahani
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0002, United States
| | - Negin Koutahzadeh
- Environmental Health & Safety, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Peifu Cheng
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Piran R. Kidambi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Milad Rabbani Esfahani
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
16
|
Tailoring nanofiltration membrane with three-dimensional turing flower protuberances for water purification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118985] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Echaide-Górriz C, Aysa-Martínez Y, Navarro M, Téllez C, Coronas J. Polyamide-MIL-101(Cr) Thin Films Synthesized on Either the Outer or Inner Surfaces of a Polysulfone Hollow Fiber for Water Nanofiltration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7773-7783. [PMID: 33534556 PMCID: PMC8892444 DOI: 10.1021/acsami.0c21571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
High-performance thin film nanocomposite (TFN) hollow fiber (HF) membranes, with MIL-101(Cr) MOF nanoparticles (52 ± 13 nm) embedded, have been synthesized with the polyamide layer formed either on the outer or inner surface of a polysulfone HF (250 and 380 μm ID and OD, respectively). The TFN_out membrane was developed using the conventional interfacial polymerization method, typically applied to obtain TFN flat membranes (MOF particles added to the thin layer by deposition). This membrane gave a water permeance value of 1.0 ± 0.7 L·m-2·h-1·bar-1 and a rejection of 90.9 ± 1.2% of acridine orange (AO, 265 Da). In contrast, the TFN_in membrane was synthesized by microfluidic means and gave a significantly higher water permeance of 2.8 ± 0.2 L·m-2·h-1·bar-1 and a slightly lower rejection of 87.4 ± 2.5% of the same solute. This remarkable increase of flux obtained with small solute AO suggests that the HF membranes developed in this work would exhibit good performance with other typical solutes with higher molecular weight than AO. The differences between the performances of both TFN_in and TFN_out membranes lay on the distinct superficial physicochemical properties of the support, the synthesis method, and the different concentrations of MOF present in the polyamide films of both membranes. The TFN_in is more desirable due to its potential advantages, and more effortless scalability due to the microfluidic continuous synthesis. In addition, the TFN_in membrane needs much fewer quantities of reactants to be synthesized than the TFN_out or the flat membrane version.
Collapse
Affiliation(s)
- Carlos Echaide-Górriz
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Yolanda Aysa-Martínez
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Marta Navarro
- Advanced
Microscopy Laboratory (LMA), Universidad
de Zaragoza, 50018 Zaragoza, Spain
| | - Carlos Téllez
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Joaquín Coronas
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|