1
|
Kalutantirige FC, He J, Yao L, Cotty S, Zhou S, Smith JW, Tajkhorshid E, Schroeder CM, Moore JS, An H, Su X, Li Y, Chen Q. Beyond nothingness in the formation and functional relevance of voids in polymer films. Nat Commun 2024; 15:2852. [PMID: 38605028 PMCID: PMC11009415 DOI: 10.1038/s41467-024-46584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Voids-the nothingness-broadly exist within nanomaterials and impact properties ranging from catalysis to mechanical response. However, understanding nanovoids is challenging due to lack of imaging methods with the needed penetration depth and spatial resolution. Here, we integrate electron tomography, morphometry, graph theory and coarse-grained molecular dynamics simulation to study the formation of interconnected nanovoids in polymer films and their impacts on permeance and nanomechanical behaviour. Using polyamide membranes for molecular separation as a representative system, three-dimensional electron tomography at nanometre resolution reveals nanovoid formation from coalescence of oligomers, supported by coarse-grained molecular dynamics simulations. Void analysis provides otherwise inaccessible inputs for accurate fittings of methanol permeance for polyamide membranes. Three-dimensional structural graphs accounting for the tortuous nanovoids within, measure higher apparent moduli with polyamide membranes of higher graph rigidity. Our study elucidates the significance of nanovoids beyond the nothingness, impacting the synthesis‒morphology‒function relationships of complex nanomaterials.
Collapse
Affiliation(s)
| | - Jinlong He
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lehan Yao
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Stephen Cotty
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Shan Zhou
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - John W Smith
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801, USA
- NIH Resource for Macromolecular Modelling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, 61801, USA
| | - Charles M Schroeder
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, 61801, USA
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, 61801, USA
| | - Hyosung An
- Department of Petrochemical Materials Engineering, Chonnam National University, Yeosu, Jeollanam-do, 59631, South Korea
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Qian Chen
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA.
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA.
- Materials Research Laboratory, University of Illinois, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Sarwar T, Raza ZA, Nazeer MA, Khan A. Synthesis of aminolyzed gelatin-mediated chitosan as pH-responsive drug-carrying porous scaffolds. Int J Biol Macromol 2024; 256:128525. [PMID: 38040168 DOI: 10.1016/j.ijbiomac.2023.128525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Bio-based drug delivery devices have gained enormous interest in the biomedical field due to their biocompatible attributes. Extensive research is being conducted on chitosan-based devices for drug delivery applications. Chitosan being hydrophobic under neutral conditions makes it difficult to interact with a polar drug of curcumin. We tended to make it polar through sol-gel synthesis and modification via PEGylation, alkaline hydrolysis, and aminolysis. Such alterations could make the chitosan-based scaffolds porous, hydrophilic, amino-functionalized, and pH-responsive. The ninhydrin assay confirmed that a successful aminolysis occurred, and the chemical interaction among the precursors was explained under infrared spectroscopy. The scanning morphology of the optimum aminolyzed membrane appeared to be porous with an average pore size of 320 ± 20 nm. The aminolyzed chitosan membrane was found thermally stable up to 310 °C, hydrophilic with a water contact angle of 23.4°, moderate flowablity, and porous (97 ± 5 %, w/w) against ethanol. The curcumin-loaded chitosan membrane expressed the UV-protection behavior of 99 %. The curcumin-loading and release phenomena were found pH-responsive. The curcumin release results were evaluated through specific kinetic models. This study could be the first report on the amphiphilic, porous, and swellable drug-loaded gelatin/chitosan membrane with pH-responsive loading and release of curcumin for potential drug delivery applications.
Collapse
Affiliation(s)
- Tanzeel Sarwar
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan.
| | - Muhammad Anwaar Nazeer
- School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Amina Khan
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| |
Collapse
|
3
|
Shanmuganathan R, Hoang Le Q, Devanesan S, R M Sayed S, Rajeswari VD, Liu X, Jhanani GK. Mint leaves (Mentha arvensis) mediated CaO nanoparticles in dye degradation and their role in anti-inflammatory, anti-cancer properties. ENVIRONMENTAL RESEARCH 2023; 236:116718. [PMID: 37481060 DOI: 10.1016/j.envres.2023.116718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
In ancient times, herbal plants were considered one of the greatest gifts from nature that human beings could receive, and about 80% of these plants have medicinal uses. In traditional medicine, Mentha arvensis, commonly known as mint, has many applications, and in the present study, the mint leaf extract has been used to synthesis nanoparticles using the mint leaf extract as a biosource for the extraction of nanoparticles. In addition to having a wide range of applications in various fields, calcium oxide (CaO) nanoparticles are also considered to be safe for human use. In order to assess the characteristics of the abstracted CaO nanoparticles, UV-visible absorption spectrophotometers, Fourier Transform Infrared spectrophotometers (FTIR), Scanning Electron Microscopes (SEMs), Dynamic Light Scattering (DLS), and X-ray Diffraction Spectrophotometers (XRDs) were used. By conducting a protein denaturation assay and nitric oxide scavenging assay, mint leaf mediated CaO nanoparticles were evaluated for their therapeutic applications. MTT assays were used to prove that the CaO nanoparticles mediated by mint leaf had anti-cancer properties. By examining the ability of mint leaf mediated CaO nanoparticles to degrade various dyes such as methyl red, methyl orange, and methylene blue, which are the most used azo dyes in textile industries resulting in water contamination, the ability of these nanoparticles to act as a photocatalytic agent was examined.
Collapse
Affiliation(s)
- Rajasree Shanmuganathan
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam; Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam; Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shaban R M Sayed
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Xinghui Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| | - G K Jhanani
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
4
|
Park SJ, Lee MS, Kilic ME, Ryu J, Park H, Park YI, Kim H, Lee KR, Lee JH. Autonomous Interfacial Assembly of Polymer Nanofilms via Surfactant-Regulated Marangoni Instability. NANO LETTERS 2023. [PMID: 37256774 DOI: 10.1021/acs.nanolett.3c00374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Interfacial polymerization (IP) provides a versatile platform for fabricating defect-free functional nanofilms for various applications, including molecular separation, energy, electronics, and biomedical materials. Unfortunately, coupled with complex natural instability phenomena, the IP mechanism and key parameters underlying the structural evolution of nanofilms, especially in the presence of surfactants as an interface regulator, remain puzzling. Here, we interfacially assembled polymer nanofilm membranes at the free water-oil interface in the presence of differently charged surfactants and comprehensively characterized their structure and properties. Combined with computational simulations, an in situ visualization of interfacial film formation discovered the critical role of Marangoni instability induced by the surfactants via various mechanisms in structurally regulating the nanofilms. Despite their different instability-triggering mechanisms, the delicate control of the surfactants enabled the fabrication of defect-free, ultra-permselective nanofilm membranes. Our study identifies critical IP parameters that allow us to rationally design nanofilms, coatings, and membranes for target applications.
Collapse
Affiliation(s)
- Sung-Joon Park
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Myung-Seok Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mehmet Emin Kilic
- Computational Science Research Center, Korea Institute of Science and Technology, 66 Hoegi-ro, Dongdaemun-gu, Seoul 02792, Republic of Korea
| | - Junil Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hosik Park
- Green Carbon Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - You In Park
- Green Carbon Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Hyoungsoo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kwang-Ryeol Lee
- Computational Science Research Center, Korea Institute of Science and Technology, 66 Hoegi-ro, Dongdaemun-gu, Seoul 02792, Republic of Korea
- On leave at the Department of Chemistry, Uppsala University, Uppsala, 75105, Sweden
| | - Jung-Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
5
|
Wang Q, Hu L, Ma H, Venkateswaran S, Hsiao BS. High-Flux Nanofibrous Composite Reverse Osmosis Membrane Containing Interfacial Water Channels for Desalination. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37192294 DOI: 10.1021/acsami.2c15509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A nanofibrous composite reverse osmosis (RO) membrane with a polyamide barrier layer containing interfacial water channels was fabricated on an electrospun nanofibrous substrate via an interfacial polymerization process. The RO membrane was employed for desalination of brackish water and exhibited enhanced permeation flux as well as rejection ratio. Nanocellulose was prepared by sequential oxidations of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and sodium periodate systems and surface grafting with different alkyl groups including octyl, decanyl, dodecanyl, tetradecanyl, cetyl, and octadecanyl groups. The chemical structure of the modified nanocellulose was verified subsequently by Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), and solid NMR measurements. Two monomers, trimesoyl chloride (TMC) and m-phenylenediamine (MPD), were employed to prepare a cross-linked polyamide matrix, i.e., the barrier layer of the RO membrane, which integrated with the alkyl groups-grafted nanocellulose to build up interfacial water channels via interfacial polymerization. The top and cross-sectional morphologies of the composite barrier layer were observed by means of scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) to verify the integration structure of the nanofibrous composite containing water channels. The aggregation and distribution of water molecules in the nanofibrous composite RO membrane verified the existence of water channels, demonstrated by molecular dynamics (MD) simulations. The desalination performance of the nanofibrous composite RO membrane was conducted and compared with that of commercially available RO membranes in the processing of brackish water, where 3 times higher permeation flux and 99.1% rejection ratio against NaCl were accomplished. This indicated that the engineering of interfacial water channels in the barrier layer could substantially increase the permeation flux of the nanofibrous composite membrane while retaining the high rejection ratio as well, i.e., to break through the trade-off between permeation flux and rejection ratio. Antifouling properties, chlorine resistance, and long-term desalination performance were also demonstrated to evaluate the potential applications of the nanofibrous composite RO membrane; remarkable durability and robustness were achieved in addition to 3 times higher permeation flux and a higher rejection ratio against commercial RO membranes in brackish water desalination.
Collapse
Affiliation(s)
- Qihang Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lifen Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyang Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Shyam Venkateswaran
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
6
|
Shen Q, Song Q, Mai Z, Lee KR, Yoshioka T, Guan K, Gonzales RR, Matsuyama H. When self-assembly meets interfacial polymerization. SCIENCE ADVANCES 2023; 9:eadf6122. [PMID: 37134177 PMCID: PMC10156122 DOI: 10.1126/sciadv.adf6122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/31/2023] [Indexed: 05/05/2023]
Abstract
Interfacial polymerization (IP) and self-assembly are two thermodynamically different processes involving an interface in their systems. When the two systems are incorporated, the interface will exhibit extraordinary characteristics and generate structural and morphological transformation. In this work, an ultrapermeable polyamide (PA) reverse osmosis (RO) membrane with crumpled surface morphology and enlarged free volume was fabricated via IP reaction with the introduction of self-assembled surfactant micellar system. The mechanisms of the formation of crumpled nanostructures were elucidated via multiscale simulations. The electrostatic interactions among m-phenylenediamine (MPD) molecules, surfactant monolayer and micelles, lead to disruption of the monolayer at the interface, which in turn shapes the initial pattern formation of the PA layer. The interfacial instability brought about by these molecular interactions promotes the formation of crumpled PA layer with larger effective surface area, facilitating the enhanced water transport. This work provides valuable insights into the mechanisms of the IP process and is fundamental for exploring high-performance desalination membranes.
Collapse
Affiliation(s)
- Qin Shen
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Qiangqiang Song
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Zhaohuan Mai
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Kecheng Guan
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Ralph Rolly Gonzales
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
7
|
Liu Y, Wu H, Guo S, Cong C, Du J, Xin Z, Zhang H, Wang J, Wang Z. Is the solvent activation strategy before heat treatment applicable to all reverse osmosis membranes? J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Nulens I, Peters R, Verbeke R, Davenport DM, Van Goethem C, De Ketelaere B, Goos P, Agrawal KV, Vankelecom IF. MPD and TMC supply as parameters to describe the synthesis-morphology-performance relationship of polyamide thin film composite membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Re-thinking polyamide thin film formation: How does interfacial destabilization dictate film morphology? J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Dissecting the structure-compaction-performance relationship of thin-film composite polyamide membranes with different structure features. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Highly permeable reverse osmosis membranes incorporated with hydrophilic polymers of intrinsic microporosity via interfacial polymerization. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Yassari M, Shakeri A, Salehi H. ZIF-67 templated thin-film composite forward osmosis membrane: Importance of incorporation method on morphology and performance. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
3D Printed and Conventional Membranes—A Review. Polymers (Basel) 2022; 14:polym14051023. [PMID: 35267846 PMCID: PMC8914971 DOI: 10.3390/polym14051023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Polymer membranes are central to the proper operation of several processes used in a wide range of applications. The production of these membranes relies on processes such as phase inversion, stretching, track etching, sintering, or electrospinning. A novel and competitive strategy in membrane production is the use of additive manufacturing that enables the easier manufacture of tailored membranes. To achieve the future development of better membranes, it is necessary to compare this novel production process to that of more conventional techniques, and clarify the advantages and disadvantages. This review article compares a conventional method of manufacturing polymer membranes to additive manufacturing. A review of 3D printed membranes is also done to give researchers a reference guide. Membranes from these two approaches were compared in terms of cost, materials, structures, properties, performance. and environmental impact. Results show that very few membrane materials are used as 3D-printed membranes. Such membranes showed acceptable performance, better structures, and less environmental impact compared with those of conventional membranes.
Collapse
|
14
|
Investigation of aqueous and organic co-solvents roles in fabricating seawater reverse osmosis membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Star polymer-mediated in-situ synthesis of silver-incorporated reverse osmosis membranes with excellent and durable biofouling resistance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Li X, Wang Z, Han X, Liu Y, Wang C, Yan F, Wang J. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119765] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Alginate hydrogel interlayer assisted interfacial polymerization for enhancing the separation performance of reverse osmosis membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Zhao Q, Zhao DL, Nai MH, Chen SB, Chung TS. Nanovoid-Enhanced Thin-Film Composite Reverse Osmosis Membranes Using ZIF-67 Nanoparticles as a Sacrificial Template. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33024-33033. [PMID: 34235913 DOI: 10.1021/acsami.1c07673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, nanovoid-enhanced thin-film composite (TFC) membranes have been successfully fabricated using ZIF-67 nanoparticles as the sacrificial template. By incorporating different amounts of ZIF-67 during interfacial polymerization, the resultant TFC membranes can have different degrees of nanovoids after self-degradation of ZIF-67 in water, consequently influencing their physiochemical properties and separation performance. Nanovoid structures endow the membranes with additional passages for water molecules. Thus, all the newly developed TFC membranes exhibit better separation performance for brackish water reverse osmosis (BWRO) desalination than the pristine TFC membrane. The membrane made from 0.1 wt % ZIF-67 shows a water permeance of 2.94 LMH bar-1 and a salt rejection of 99.28% when being tested under BWRO at 20 bar. This water permeance is 53% higher than that of the pristine TFC membrane with the salt rejection well maintained.
Collapse
Affiliation(s)
- Qipeng Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Die Ling Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Mui Hoon Nai
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Shing Bor Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Tai-Shung Chung
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore 117585, Singapore
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
19
|
Seah MQ, Khoo YS, Lau WJ, Goh PS, Ismail AF. New Concept of Thin-Film Composite Nanofiltration Membrane Fabrication Using a Mist-Based Interfacial Polymerization Technique. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mei Qun Seah
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru, 81310 Johor, Malaysia
| | - Ying Siew Khoo
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru, 81310 Johor, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru, 81310 Johor, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru, 81310 Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru, 81310 Johor, Malaysia
| |
Collapse
|
20
|
Lim YJ, Goh K, Lai GS, Ng CY, Torres J, Wang R. Fast water transport through biomimetic reverse osmosis membranes embedded with peptide-attached (pR)-pillar[5]arenes water channels. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119276] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Liu Y, Gao J, Ge Y, Yu S, Liu M, Gao C. A combined interfacial polymerization and in-situ sol-gel strategy to construct composite nanofiltration membrane with improved pore size distribution and anti-protein-fouling property. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119097] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Zhang Z, Ng TCA, Gu Q, Zhang L, Lyu Z, Zhang X, Ng HY, Wang J. Ultrathin TiO2 microfiltration membranes supported on a holey intermediate layer to raise filtration performance. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2020.09.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Jeon S, Lee JH. Rationally designed in-situ fabrication of thin film nanocomposite membranes with enhanced desalination and anti-biofouling performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118542] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Progress of Interfacial Polymerization Techniques for Polyamide Thin Film (Nano)Composite Membrane Fabrication: A Comprehensive Review. Polymers (Basel) 2020; 12:polym12122817. [PMID: 33261079 PMCID: PMC7760071 DOI: 10.3390/polym12122817] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/12/2023] Open
Abstract
In this paper, we review various novel/modified interfacial polymerization (IP) techniques for the fabrication of polyamide (PA) thin film composite (TFC)/thin film nanocomposite (TFN) membranes in both pressure-driven and osmotically driven separation processes. Although conventional IP technique is the dominant technology for the fabrication of commercial nanofiltration (NF) and reverse osmosis (RO) membranes, it is plagued with issues of low membrane permeability, relatively thick PA layer and susceptibility to fouling, which limit the performance. Over the past decade, we have seen a significant growth in scientific publications related to the novel/modified IP techniques used in fabricating advanced PA-TFC/TFN membranes for various water applications. Novel/modified IP lab-scale studies have consistently, so far, yielded promising results compared to membranes made by conventional IP technique, in terms of better filtration efficiency (increased permeability without compensating solute rejection), improved chemical properties (crosslinking degree), reduced surface roughness and the perfect embedment of nanomaterials within selective layers. Furthermore, several new IP techniques can precisely control the thickness of the PA layer at sub-10 nm and significantly reduce the usage of chemicals. Despite the substantial improvements, these novel IP approaches have downsides that hinder their extensive implementation both at the lab-scale and in manufacturing environments. Herein, this review offers valuable insights into the development of effective IP techniques in the fabrication of TFC/TFN membrane for enhanced water separation.
Collapse
|
25
|
Park SJ, Lee JH. Fabrication of high-performance reverse osmosis membranes via dual-layer slot coating with tailoring interfacial adhesion. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
26
|
Cao Y, Chen X, Feng S, Wan Y, Luo J. Nanofiltration for Decolorization: Membrane Fabrication, Applications and Challenges. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yang Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shichao Feng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
27
|
Shan X, Li SL, Fu W, Hu Y, Gong G, Hu Y. Preparation of high performance TFC RO membranes by surface grafting of small-molecule zwitterions. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118209] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Filippov AN, Koroleva YO, Verma AK. Cell Model of a Fibrous Medium (Membrane). Comparison between Two Different Approaches to Varying Liquid Viscosity. MEMBRANES AND MEMBRANE TECHNOLOGIES 2020. [DOI: 10.1134/s2517751620040058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|