1
|
Mochizuki T, Sampei S, Suga K, Watanabe K, Welling TAJ, Nagao D. A Quantitative Approach to Characterize the Surface Modification on Nanoparticles Based on Localized Dielectric Environments. Anal Chem 2024; 96:3284-3290. [PMID: 38355104 PMCID: PMC10902806 DOI: 10.1021/acs.analchem.3c03593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Nanoparticles (NPs) are utilized for the functionalization of composite materials and nanofluids. Although oxide NPs (e.g., silica (SiO2)) exhibit less dispersibility in organic solvents or polymers due to their hydrophilic surface, the surface modification using silane coupling agents can improve their dispersibility in media with low dielectric constants. Herein, SiO2 NPs were functionalized using octyltriethoxysilane (OTES, C8) and dodecyltriethoxysilane (DTES, C12), wherein the degrees of surface modification of SiO2@C8 and SiO2@C12 were quantitatively evaluated based on the ratio of modifier to surface silanol group (θ) and the volume fraction of organic modifier to total particle volume (ϕR). The variations of surface properties were revealed by analyzing the Hansen solubility parameters (HSP). Particularly, the surface modification using OTES or DTES significantly affected the polarity (δP) of NPs. The local dielectric environments of surface-modified SiO2 NPs were characterized using a solvatochromic dye, Laurdan. By analyzing the peak position of the steady-state emission spectrum of Laurdan in a NP suspension, the apparent dielectric environments surrounding NPs (εapp) were obtained. A good correlation between ϕR and εapp was observed, indicating that ϕR is a reliable quantity for understanding the properties of surface-modified NPs. Furthermore, the generalized polarization (GP) of NPs was investigated. The surface-modified SiO2 NPs with higher ϕR (≥0.15) exhibited GP > 0, suggesting that the modifiers are well-organized on the surface of NPs. The localized dielectric environment surrounding NPs could be predicted by analyzing the volume fraction of nonpolar moieties derived from modifiers. Alternatively, εapp and GP can be utilized for understanding the properties of inorganic-organic hybrid NPs.
Collapse
Affiliation(s)
- Taketo Mochizuki
- Department of Chemical Engineering, Tohoku University, Sendai, Miyagi 9808579, Japan
| | - Shota Sampei
- Department of Chemical Engineering, Tohoku University, Sendai, Miyagi 9808579, Japan
| | - Keishi Suga
- Department of Chemical Engineering, Tohoku University, Sendai, Miyagi 9808579, Japan
| | - Kanako Watanabe
- Department of Chemical Engineering, Tohoku University, Sendai, Miyagi 9808579, Japan
| | - Tom A J Welling
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 9808578, Japan
| | - Daisuke Nagao
- Department of Chemical Engineering, Tohoku University, Sendai, Miyagi 9808579, Japan
| |
Collapse
|
2
|
Liu B, Zhang S, Li M, Wang Y, Mei D. Metal-Organic Framework/Polyvinyl Alcohol Composite Films for Multiple Applications Prepared by Different Methods. MEMBRANES 2023; 13:755. [PMID: 37755178 PMCID: PMC10537366 DOI: 10.3390/membranes13090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023]
Abstract
The incorporation of different functional fillers has been widely used to improve the properties of polymeric materials. The polyhydroxy structure of PVA with excellent film-forming ability can be easily combined with organic/inorganic multifunctional compounds, and such an interesting combining phenomenon can create a variety of functional materials in the field of materials science. The composite membrane material obtained by combining MOF material with high porosity, specific surface area, and adjustable structure with PVA, a non-toxic and low-cost polymer material with good solubility and biodegradability, can combine the processability of PVA with the excellent performance of porous filler MOFs, solving the problem that the poor machinability of MOFs and the difficulty of recycling limit the practical application of powdered MOFs and improving the physicochemical properties of PVA, maximizing the advantages of the material to develop a wider range of applications. Firstly, we systematically summarize the preparation of MOF/PVA composite membrane materials using solution casting, electrostatic spinning, and other different methods for such excellent properties, in addition to discussing in detail the various applications of MOF/PVA composite membranes in water treatment, sensing, air purification, separation, antibacterials, and so on. Finally, we conclude with a discussion of the difficulties that need to be overcome during the film formation process to affect the performance of the composite film and offer encouraging solutions.
Collapse
Affiliation(s)
| | - Shuhua Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (B.L.); (M.L.); (Y.W.)
| | | | | | - Dajiang Mei
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (B.L.); (M.L.); (Y.W.)
| |
Collapse
|
3
|
Zamani A, Thibault J, Tezel FH. Separation of n-Butanol from Aqueous Solutions via Pervaporation Using PDMS/ZIF-8 Mixed-Matrix Membranes of Different Particle Sizes. MEMBRANES 2023; 13:632. [PMID: 37504998 PMCID: PMC10385397 DOI: 10.3390/membranes13070632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The use of mixed matrix membranes (MMMs) to facilitate the production of biofuels has attracted significant research interest in the field of renewable energy. In this study, the pervaporation separation of butanol from aqueous solutions was studied using a series of MMMs, including zeolitic imidazolate frameworks (ZIF-8)-polydimethylsiloxane (PDMS) and zinc oxide-PDMS mixed matrix membranes. Although several studies have reported that mixed matrix membranes incorporating ZIF-8 nanoparticles showed improved pervaporation performances attributed to their intrinsic microporosity and high specific surface area, an in-depth study on the role of ZIF-8 nanoparticle size in MMMs has not yet been reported. In this study, different average sizes of ZIF-8 nanoparticles (30, 65, and 80 nm) were synthesized, and the effects of particle size and particle loading content on the performance of butanol separation using MMMs were investigated. Furthermore, zinc oxide nanoparticles, as non-porous fillers with the same metalcore as ZIF-8 but with a very different geometric shape, were used to illustrate the importance of the particle geometry on the membrane performance. Results showed that small-sized ZIF-8 nanoparticles have better permeability and selectivity than medium and large-size ZIF-8 MMMs. While the permeation flux increased continuously with an increase in the loading of nanoparticles, the selectivity reached a maximum for MMM with 8 wt% smaller-size ZIF-8 nanoparticle loading. The flux and butanol selectivity increased by 350% and 6%, respectively, in comparison to those of neat PDMS membranes prepared in this study.
Collapse
Affiliation(s)
- Ali Zamani
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jules Thibault
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Fatma Handan Tezel
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
4
|
Yoshimoto Y, Tomita Y, Sato K, Higashi S, Yamato M, Takagi S, Kawakami H, Kinefuchi I. Gas Adsorption and Diffusion Behaviors in Interfacial Systems Composed of a Polymer of Intrinsic Microporosity and Amorphous Silica: A Molecular Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7567-7579. [PMID: 35666952 DOI: 10.1021/acs.langmuir.2c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We investigate the adsorption and diffusion behaviors of CO2, CH4, and N2 in interfacial systems composed of a polymer of intrinsic microporosity (PIM-1) and amorphous silica using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations. We build model systems of mixed matrix membranes (MMMs) with PIM-1 chains sandwiched between silica surfaces. Gas adsorption analysis using GCMC simulations shows that gas molecules are preferentially adsorbed in microcavities distributed near silica surfaces, resulting in an increase in the solubility coefficients of CO2, CH4, and N2 compared to bulk PIM-1. In contrast, diffusion coefficients obtained from MD simulations and then calibrated using the dual-mode sorption model show different tendencies depending on gas species: CO2 diffusivity decreases in MMMs compared to PIM-1, whereas CH4 and N2 diffusivities increase. These differences are attributed to competing effects of silica surfaces: the emergence of larger pores as a result of chain packing disruption, which enhances gas diffusion, and a quadrupole-dipole interaction between gas molecules and silica surface hydroxyl groups, which retards gas diffusion. The former has a greater impact on CH4 and N2 diffusivities, whereas the latter has a greater impact on CO2 diffusivity due to the strong quadrupole-dipole interaction between CO2 and surface hydroxyls. These findings add to our understanding of gas adsorption and diffusion behaviors in the vicinity of PIM-1/silica interfaces, which are unobtainable in experimental studies.
Collapse
Affiliation(s)
- Yuta Yoshimoto
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuiko Tomita
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kohei Sato
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shiori Higashi
- Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Masafumi Yamato
- Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Shu Takagi
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyoshi Kawakami
- Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Ikuya Kinefuchi
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
5
|
Deepa K, Arthanareeswaran G. Influence of various shapes of alumina nanoparticle in integrated polysulfone membrane for separation of lignin from woody biomass and salt rejection. ENVIRONMENTAL RESEARCH 2022; 209:112820. [PMID: 35085563 DOI: 10.1016/j.envres.2022.112820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Lignin valorization is essential in proposing an economic perspective as a raw material for valuable compounds. The bio-refineries require adequate processing to improve the high purity of lignin. Meanwhile, nanofiltration is fascinated attention to obtain high purity value-added products. The effect of alumina nanoparticles on the fabrication of mixed matrix membranes (MMM) has contributed to improvising filtration performance. However, incorporating nanoparticles is a significant issue regarding appropriate size and shape integrated into membrane for better filtration efficiency. The influence of shapes of alumina nanoparticles has been investigated into polysulfone (PSf) membranes for salt and lignin separation. The morphology of alumina was tailored with spindle, cubic, and spherical shapes synthesized at a different calcination temperature of 250, 500, 700 and 900 °C, respectively. The phase transitions were confirmed in X-ray diffraction (XRD) analysis, and the shape of the nanoparticles was observed in a high-resolution transmission electron microscope (HRTEM). The separation efficiency of membranes was tested with salt rejection using sodium sulfate, calcium chloride, potassium sulfate, and sodium chloride. The lignin was extracted from prehydrolysed sawdust, and the synthetic lignosulfonic acid sodium salt solution was separated. The higher lignin rejection of 98.6% and 97.9% were obtained for cubic shaped gamma phase alumina mixed matrix membrane. The high rejection of lignin occurred due to narrow pores channels that could resist the transfer of lignin through the membrane. The results proved that the controllable organization of PSf/alumina mixed matrix membranes could apply for lignocellulose compounds with good efficiency.
Collapse
Affiliation(s)
- K Deepa
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India
| | - G Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India.
| |
Collapse
|
6
|
Mixed matrix membranes for post-combustion carbon capture: From materials design to membrane engineering. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Wang J, Wang G, Zhang Z, Ouyang G, Hao Z. Effects of mesoporous silica particle size and pore structure on the performance of polymer-mesoporous silica mixed matrix membranes. RSC Adv 2021; 11:36577-36586. [PMID: 35494354 PMCID: PMC9043583 DOI: 10.1039/d1ra05125c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/31/2021] [Indexed: 11/21/2022] Open
Abstract
The fabrication of mixed matrix membranes (MMMs) has been regarded as an effective and economic approach to enhance the gas permeability and selectivity properties of conventional polymeric membranes for gas separation applications. However, the poor compatibility between polymeric matrix and inorganic filler in MMMs could lead to the generation of interfacial defects resulting in reduced gas selectivity. In this work, with the aim of studying the effect of particle size and pore structure of the filler on the performance of the resultant MMMs, nano/micro sized spherical mesoporous silicas with 2D/3D pore structure (MCM-41 and MCM-48) were synthesized and selected as fillers for the preparation of polydimethylsiloxane (PDMS)-based MMMs. The separation properties of the membranes prepared were characterized by permeability measurements for nitrogen and organic vapors (C3H6 and n-C4H10). Compared with microsized particles, nanosized fillers have better dispersion in the polymer matrix which could minimize the formation of non-selective microvoids around the particles, leading to higher vapor/N2 ideal selectivities of the MMMs, even at the high loading (15 wt%). Moreover, due to the conventional random packing orientation of the particles in the polymer, vapor permeation was severely hindered in the MMMs fabricated from mesoporous silica with 2D pore channels. The interface morphologies and gas diffusion paths in the MMMs have also been proposed. With an optimum loading of nanosized MCM-48 (3D pore structure), the vapor permeabilities and vapor/N2 ideal selectivities of the MMMs were shown to increase simultaneously, compared with the neat polymer membrane. The effects of filler particle size and pore structure on the gas separation performance of mixed matrix membranes were comprehensively investigated via elaborate synthesis of mesoporous silicas.![]()
Collapse
Affiliation(s)
- Junhui Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University No. 135, Xingang Xi Road Guangzhou Guangdong 510275 China
| | - Gang Wang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Zhongshen Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences Beijing 101408 China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University No. 135, Xingang Xi Road Guangzhou Guangdong 510275 China.,Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University Kexue Avenue 100 Zhengzhou 450001 China.,Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou) 100 Xianlie Middle Road Guangzhou 510070 China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences Beijing 101408 China
| |
Collapse
|
8
|
Li S, Liu Y, Wong DA, Yang J. Recent Advances in Polymer-Inorganic Mixed Matrix Membranes for CO 2 Separation. Polymers (Basel) 2021; 13:2539. [PMID: 34372141 PMCID: PMC8348380 DOI: 10.3390/polym13152539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/29/2023] Open
Abstract
Since the second industrial revolution, the use of fossil fuels has been powering the advance of human society. However, the surge in carbon dioxide (CO2) emissions has raised unsettling concerns about global warming and its consequences. Membrane separation technologies have emerged as one of the major carbon reduction approaches because they are less energy-intensive and more environmentally friendly compared to other separation techniques. Compared to pure polymeric membranes, mixed matrix membranes (MMMs) that encompass both a polymeric matrix and molecular sieving fillers have received tremendous attention, as they have the potential to combine the advantages of both polymers and molecular sieves, while cancelling out each other's drawbacks. In this review, we will discuss recent advances in the development of MMMs for CO2 separation. We will discuss general mechanisms of CO2 separation in an MMM, and then compare the performances of MMMs that are based on zeolite, MOF, metal oxide nanoparticles and nanocarbons, with an emphasis on the materials' preparation methods and their chemistries. As the field is advancing fast, we will particularly focus on examples from the last 5 years, in order to provide the most up-to-date overview in this area.
Collapse
Affiliation(s)
- Sipei Li
- Aramco Americas—Boston Research Center, Cambridge, MA 02139, USA; (Y.L.); (D.A.W.)
| | | | | | - John Yang
- Aramco Americas—Boston Research Center, Cambridge, MA 02139, USA; (Y.L.); (D.A.W.)
| |
Collapse
|
9
|
Review: Mixed-Matrix Membranes with CNT for CO 2 Separation Processes. MEMBRANES 2021; 11:membranes11060457. [PMID: 34205664 PMCID: PMC8234234 DOI: 10.3390/membranes11060457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022]
Abstract
The membranes' role is of supreme importance in the separation of compounds under different phases of matter. The topic addressed here is based on the use of membranes on the gases separation, specifically the advantages of mixed-matrix membranes (MMMs) when using carbon nanotubes as fillers to separate carbon dioxide (CO2) from other carrier gas. MMMs consist of a polymer support with additive fillers to improve their efficiency by increasing both selectivity and permeability. The most promising fillers in the MMM development are nanostructured molecules. Due to the good prospects of carbon nanotubes (CNTs) as MMM fillers, this article aims to concentrate the advances and developments of CNT-MMM to separate gases, such as CO2. The influence of functionalized CNT or mixtures of CNT with additional materials such as zeolites, hydrogel and, graphene sheets on membranes performance is highlighted in the present work.
Collapse
|
10
|
Higashi S, Yamato M, Kawakami H. Effect of Phase Separation due to Solvent Evaporation on Particle Aggregation in the Skin Layer of the Gas Separation Membrane. J PHOTOPOLYM SCI TEC 2021. [DOI: 10.2494/photopolymer.34.449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shiori Higashi
- Department of Applied Chemistry, Graduate School of Urban Environment Sciences, Tokyo Metropolitan University
| | - Masafumi Yamato
- Department of Applied Chemistry, Graduate School of Urban Environment Sciences, Tokyo Metropolitan University
| | - Hiroyoshi Kawakami
- Department of Applied Chemistry, Graduate School of Urban Environment Sciences, Tokyo Metropolitan University
| |
Collapse
|
11
|
|
12
|
Mikami H, Higashi S, Muramoto T, Tanaka M, Yamato M, Kawakami H. Gas Permeable Mixed Matrix Membranes Composed of a Polymer of Intrinsic Microporosity (PIM-1) and Surface-modified Pearl-necklace Silica Nanoparticles: Effect of Expansion of Nano-space on Gas Permeability. J PHOTOPOLYM SCI TEC 2020. [DOI: 10.2494/photopolymer.33.313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hiroto Mikami
- Department of Applied Chemistry, Graduate School of Urban Environment Sciences, Tokyo Metropolitan University
| | - Shiori Higashi
- Department of Applied Chemistry, Graduate School of Urban Environment Sciences, Tokyo Metropolitan University
| | - Takuya Muramoto
- Department of Applied Chemistry, Graduate School of Urban Environment Sciences, Tokyo Metropolitan University
| | - Manabu Tanaka
- Department of Applied Chemistry, Graduate School of Urban Environment Sciences, Tokyo Metropolitan University
| | - Masafumi Yamato
- Department of Applied Chemistry, Graduate School of Urban Environment Sciences, Tokyo Metropolitan University
| | - Hiroyoshi Kawakami
- Department of Applied Chemistry, Graduate School of Urban Environment Sciences, Tokyo Metropolitan University
| |
Collapse
|