1
|
Mao H, Yang H, Liu J, Zhang S, Liu D, Wu Q, Sun W, Song XM, Ma T. Improved nitrogen reduction electroactivity by unique MoS2-SnS2 heterogeneous nanoplates supported on poly(zwitterionic liquids) functionalized polypyrrole/graphene oxide. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63944-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Geng Z, Liang S, Sun M, Liu C, He N, Yang X, Cui X, Fan W, Wang X, Huo Y. High-Performance, Free-Standing Symmetric Hybrid Membranes for Osmotic Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8967-8975. [PMID: 33576595 DOI: 10.1021/acsami.0c22124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The internal concentration polarization (ICP) of asymmetric osmotic membranes with support layers greatly reduced membrane water permeability, therefore compromising membrane performance. In this study, a series of free-standing symmetric hybrid forward osmosis (FO) membranes without experiencing ICP were fabricated by covalently linking metal-organic framework (MOF) nanofillers with a polymer matrix. Owing to the introduction of MOFs, which allow only water permeation but reject salts by steric hindrance, the prepared hybrid membranes could approach the empirical permeability-selectivity trade-off. The optimized hybrid membrane displayed an outstanding water/Na2SO4 selectivity of ∼1208.4 L mol-1, compared with that of conventional membranes of ∼375.6 L mol-1. Additionally, the fabricated hybrid membranes showed excellent mechanical robustness, maintaining structural integrity during the long-term FO separation of high-salinity solution. This work provides an effective methodology to fabricate high-performance, symmetric MOF-based membranes for osmotic separation processes such as seawater desalination and water purification.
Collapse
Affiliation(s)
- Zhi Geng
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Shiqiang Liang
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Meng Sun
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Chuhan Liu
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Nan He
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Xia Yang
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Xiaochun Cui
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Wei Fan
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Xianze Wang
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Yang Huo
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| |
Collapse
|