1
|
Zheng B, Jia S, Tian Y. Improvement of heavy metal separation performance by positively charged small-sized graphene oxide membrane. ENVIRONMENTAL TECHNOLOGY 2024; 45:2471-2485. [PMID: 36730831 DOI: 10.1080/09593330.2023.2176262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Multilayered graphene oxide (GO) membranes are promising to be widely applied to purify water effectively. However, the performance of most membranes prepared at present is not ideal, which may be related to the pore diameter of the substrate (determining the real loading amount of GO) and the size of the GO nanosheets (determining the number of channels on the unit area), which has not been fully studied. In this study, a rotating dip-coating reactor were firstly developed to ensure the uniform deposition of reactants on the surface of the substrate. Then, the preparation method for the membrane was improved. Microfiltration membranes were used as the supporting substrate, polydopamine was deposited as the adhesive layer, ethylenediamine was used to restrict the layer spacing to strengthen the size exclusion effect, and positively charged polyethyleneimine (PEI) was used to strengthen the Donnan effect. Finally, the effects of the pore size of the substrate and the size of the GO nanosheets on the membrane performance were investigated. Compared with the substrates with a pore size of 0.22 μm in most literatures, substrates of 0.1 μm can retain more small GO (SGO) nanosheets, thereby improving the performance. The performance of the SGO membrane was much better than that of the large-sized GO membrane. With a water permeability of no less than 7.9 L/(m2·h·bar), rejection rates for Pb2+ and Cd2+ of the SGO membrane could reach more than 97%. These findings are constructive to separate heavy metals from water effectively.
Collapse
Affiliation(s)
- Bo Zheng
- College of Urban and Rural Construction, Hebei Agricultural University, Baoding, People's Republic of China
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Shichao Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Yimei Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
2
|
Ou Y, Gu Z, Luo Y. Efficient heavy metal ion removal by fluorographene nanochannel templated molecular sieve: a molecular dynamics simulation study. Sci Rep 2024; 14:6298. [PMID: 38491099 PMCID: PMC10943243 DOI: 10.1038/s41598-024-56908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Environmental water contamination, particularly by heavy metal ions, has emerged as a worldwide concern due to their non-biodegradable nature and propensity to accumulate in soil and living organisms, posing a significant risk to human health. Therefore, the effective removal of heavy metal ions from wastewater is of utmost importance for both public health and environmental sustainability. In this study, we propose and design a membrane consisting of fluorographene (F-GRA) nanochannels to investigate its heavy metal ion removal capacity through molecular dynamics simulation. Although many previous studies have revealed the good performance of lamellar graphene membranes for desalination, how the zero-charged graphene functionalized by fluorine atoms (fully covered by negative charges) affects the heavy metal ion removal capacity is still unknown. Our F-GRA membrane exhibits an exceptional water permeability accompanied by an ideal heavy metal ion rejection rate. The superior performance of F-GRA membrane in removing heavy metal ions can be attributed to the negative charge of the F-GRA surface, which results in electrostatic attraction to positively charged ions that facilitates the optimal ion capture. Our analysis of the potential of mean force further reveals that water molecule exhibits the lowest free energy barrier relative to ions when passing through the F-GRA channel, indicating that water transport is energetically more favorable than ion. Additional simulations of lamellar graphene membranes show that graphene membranes have higher water permeabilities compared with F-GRA membranes, while robustly compromising the heavy meal ion rejection rates, and thus F-GRA membranes show better performances. Overall, our theoretical research offers a potential design approach of F-GRA membrane for heavy metal ions removal in future industrial wastewater treatment.
Collapse
Affiliation(s)
- Youguan Ou
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Jiangsu, 225009, China
| | - Yuqi Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China.
| |
Collapse
|
3
|
Li N, Xue W, Han Y, Zhu B, Wu J, Xu Z. Defect Engineering in GO Membranes - Tailoring Size and Oxidation Degree of Nanosheet for Enhanced Pore Channels. Chem Asian J 2024:e202301065. [PMID: 38329385 DOI: 10.1002/asia.202301065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Graphene Oxide (GO) membrane has been extensively applied in the field of water purification and membrane separation processes. While the solute molecule transport in GO membranes encompasses interlayer channels, edge defects, and in-plane crack-like holes, the significance of edge defects or crack-like pores in ultrathin membranes is often overlooked. In our study, we focused on the construction of short-range channel GO membranes with varied defect structures by modulating the transverse size of the porous nanosheets. GO nanosheets with different sizes were procured through high-energy γ-irradiation combined with centrifugation. Notably, the large-sized porous GO nanosheets (L-pGO) exhibit a consistent structure, and numerous in-plane defects. In contrast, the smaller counterparts (S-pGO) present a fewer in-plane defects. The performance metrics revealed that L-pGO exhibited a water flux of 849.25 L m-2 h-1 bar-1 , while S-pGO demonstrated nearly 100 % dye rejection capacity. These findings underscore the potential of defect engineering as a powerful strategy to enhance the efficiency of two-dimensional membranes.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Weihao Xue
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Yu Han
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Bo Zhu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Jinman Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| |
Collapse
|
4
|
Syryamina VN, Astvatsaturov DA, Dzuba SA, Chumakova NA. Glass-like behavior of intercalated organic solvents in graphite oxide detected by spin-probe EPR. Phys Chem Chem Phys 2023; 25:25720-25727. [PMID: 37721717 DOI: 10.1039/d3cp03253a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Membranes based on graphite oxide (GO) are promising materials for the separation of polar liquids and gases. Understanding the properties of solvents immersed in GO is important for the development of various technological applications. Here, the molecular motions of the TEMPO nitroxide spin probe in acetonitrile intercalated into the GO inter-plane space were studied using electron paramagnetic resonance (EPR), including its pulsed version, and electron spin echo (ESE). For a sample containing 75% acetonitrile relative to equilibrium sorption at room temperature, ESE-detected stochastic librations were observed for TEMPO molecules above 135 K. Since these librations are an inherent property of molecular glasses, this fact indicates that intercalated acetonitrile forms a two-dimensional glass state. Above 225 K, an acceleration of stochastic librations was observed, indicating the manifestation of a glass-like dynamical cross-over. Continuous wave (CW) EPR spectra of TEMPO showed the absence of overall tumbling motions in the entire investigated temperature range of up to 340 K, indicating that the intercalated acetonitrile does not behave as a bulk liquid (the melting point of acetonitrile is 229 K). Dynamical librations of TEMPO molecules detected by CW EPR were found to accelerate above 240 K.
Collapse
Affiliation(s)
- Victoria N Syryamina
- Voevodsky Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk, 630090, Russian Federation.
| | - Dmitry A Astvatsaturov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Science, Kosygin St. 4, Moscow, 119991, Russian Federation
- M.V. Lomonosov Moscow State University, Chemistry Department, Leninskiye Gory, 1/3, Moscow, 119991, Russian Federation
| | - Sergei A Dzuba
- Voevodsky Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk, 630090, Russian Federation.
- Department of Physics, Novosibirsk State University, 630090, Novosibirsk, Russian Federation
| | - Natalia A Chumakova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Science, Kosygin St. 4, Moscow, 119991, Russian Federation
- M.V. Lomonosov Moscow State University, Chemistry Department, Leninskiye Gory, 1/3, Moscow, 119991, Russian Federation
| |
Collapse
|
5
|
Zheng B, Chu X, Peng Z, Tian Y. Improving the separation performance for heavy metals by optimizing the structure of multilayered GO membrane. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Chen Y, Yang X. Molecular simulation of layered GO membranes with amorphous structure for heavy metal ions separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Zeng J, Zhang Y, Chen Y, Han Z, Chen X, Peng Y, Chen L, Chen S. Molecular dynamics simulation of the adsorption properties of graphene oxide/graphene composite for alkali metal ions. J Mol Graph Model 2022; 114:108184. [DOI: 10.1016/j.jmgm.2022.108184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
|
8
|
Stability of Graphene Oxide Composite Membranes in an Aqueous Environment from a Molecular Point of View. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We used molecular dynamics to investigate the stability of graphene oxide (GO) layers supported on three polymeric materials, namely a polyvinylidene fluoride (PVDF), a pristine and a crosslinked polyamide–imide (PAI and PAI-cr). The membrane configurations consisted of a few layers of GO nanosheets stacked over the specified polymeric supports and submerged in water. We monitored the position, the tilt angle, and the radial distribution function of the individual GO nanosheets in respect to the plane of the supports. We showed that the outermost GO nanosheets were more distorted than those attached directly on the supports. The greatest distortion was observed for the GO nanosheets of the PVDF-supported system. Next, we recorded the density profiles of the water molecules across the distance from the layers to the polymer and discussed the hydrogen bonds between water hydrogens and the oxygen atoms of the GO functional groups.
Collapse
|
9
|
Chu X, Zheng B, Li Z, Cai C, Peng Z, Zhao P, Tian Y. Occurrence and distribution of microplastics in water supply systems: In water and pipe scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150004. [PMID: 34500280 DOI: 10.1016/j.scitotenv.2021.150004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 05/26/2023]
Abstract
Microplastic (MP) pollution has received widespread attention; however, its occurrence and distribution in water supply systems, particularly in pipe scales, remains unclear. In this study, MPs were observed in water and pipe scale samples from the drinking water treatment plant (DWTP) and distribution system (DWDS), respectively. The MP concentrations ranged from 13.23 to 134.79 n/L and 569.99 to 751.73 n/kg in the water and pipe scale samples, respectively. The predominant particles in the pipe scales (50-100 μm) were smaller than those in the water samples (> 200 μm). Overall, MP fragments were the most abundant. Of all the identified MPs, nylon and polyvinyl chloride were predominant in the water and pipe scale samples, respectively. Furthermore, the DWTP and DWDS both prevented MPs from entering the tap water, thereby reducing their risk. The results of this study provide direct evidence for the strong adsorption of MPs onto pipe scales, indicating that pipe scale stability may play a role in improving water quality and security. However, the abundance of MPs in pipe scales cannot be ignored. Additionally, the results provide valuable background information on MP pollution in water supply systems.
Collapse
Affiliation(s)
- Xianxian Chu
- Department of Environmental Engineering, Tianjin University, Tianjin 300350, China
| | - Bo Zheng
- Department of Environmental Engineering, Tianjin University, Tianjin 300350, China
| | - Zhengxuan Li
- Department of Environmental Engineering, Tianjin University, Tianjin 300350, China
| | - Cheng Cai
- Department of Environmental Engineering, Tianjin University, Tianjin 300350, China
| | - Zhu Peng
- Department of Environmental Engineering, Tianjin University, Tianjin 300350, China
| | - Peng Zhao
- Department of Environmental Engineering, Tianjin University, Tianjin 300350, China
| | - Yimei Tian
- Department of Environmental Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
10
|
Wang P, Jia YX, Yan R, Wang M. Graphene oxide proton permselective membrane for electrodialysis-based waste acid reclamation: Simulation and validation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Zou X, Li M, Xiao H, Zhou S, Chen C, Zhao Y. Simulation study on real laminar assembly of g-C3N4 high performance free standing membrane with bio-based materials. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Zhao X, Che Y, Mo Y, Huang W, Wang C. Fabrication of PEI modified GO/MXene composite membrane and its application in removing metal cations from water. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119847] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Facile and extensible preparation of multi-layered graphene oxide membranes with enhanced long-term desalting performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Tanis I, Kostarellou E, Karatasos K. Molecular dynamics simulations of hyperbranched poly(ethylene imine)-graphene oxide nanocomposites as dye adsorbents for water purification. Phys Chem Chem Phys 2021; 23:22874-22884. [PMID: 34668493 DOI: 10.1039/d1cp02461b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomistically detailed molecular dynamics simulations were employed to study the adsorption capacity of graphene-oxide-based (GO) aqueous systems for the methylene blue (MB) dye in the presence of branched poly(ethylene imine) (BPEI) polymers. The polymeric component was either freely mixed or chemically attached to GO. The main focus was the elucidation of the effects originating from the presence of BPEI molecules in the association of MB with the formed GO complexes. The effect of temperature was also examined. It was found that the presence of the cationic BPEI molecules results in the formation of a distinct microenvironment characterized by a polymer-mediated interconnected morphology which promotes the development of larger-sized MB clusters. These clusters were found to form in the vicinity of the GO flakes, increasing thus the adsorption capacity of the dye molecules in the polymer-containing systems. Particularly in the system with the BPEI-functionalized GO flakes, a persistent percolated structure is formed, which results in a more restricted diffusion of the MB molecules, increasing thus significantly their residence time close to the GO surface. The clustering behavior of MB was found to be temperature-dependent in the BPEI-based models, providing useful information regarding the conditions for optimal adsorption performance of such membranes, in nanofiltration processes.
Collapse
Affiliation(s)
- I Tanis
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - E Kostarellou
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - K Karatasos
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
15
|
Functionalized boron nitride nanosheet as a membrane for removal of Pb2+ and Cd2+ ions from aqueous solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114920] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|