1
|
Qiu Y, Wu S, Xia L, Ren LF, Shao J, Shen J, Yang Z, Tang CY, Wu C, Van der Bruggen B, Zhao Y. Ionic resource recovery for carbon neutral papermaking wastewater reclamation by a chemical self-sufficiency zero liquid discharge system. WATER RESEARCH 2023; 229:119451. [PMID: 36493701 DOI: 10.1016/j.watres.2022.119451] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Papermaking industry discharges large quantities of wastewater and waste gas, whose treatment is limited by extra chemicals requirements, insufficient resource recovery and high energy consumption. Herein, a chemical self-sufficiency zero liquid discharge (ZLD) system, which integrates nanofiltration, bipolar membrane electrodialysis and membrane contactor (NF-BMED-MC), is designed for the resource recovery from wastewater and waste gas. The key features of this system include: 1) recovery of NaCl from pretreated papermaking wastewater by NF, 2) HCl/NaOH generation and fresh water recovery by BMED, and 3) CO2 capture and NaOH/Na2CO3 generation by MC. This integrated system shows great synergy. By precipitating hardness ions in papermaking wastewater and NF concentrate with NaOH/Na2CO3, the inorganic scaling on NF membrane is mitigated. Moreover, the NF-BMED-MC system with high stability can simultaneously achieve efficient CO2 removal and sustainable recovery of fresh water and high-purity resources (NaCl, Na2SO4, NaOH and HCl) from wastewater and waste gas without introducing any extra chemicals. The environmental evaluation indicates the carbon-neutral papermaking wastewater reclamation can be achieved through the application of NF-BMED-MC system. This study establishes the promising of NF-BMED-MC as a sustainable alternative to current membrane methods for ZLD of papermaking industry discharges treatment.
Collapse
Affiliation(s)
- Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, PR China
| | - Sifan Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lei Xia
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, PR China
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR 999077, PR China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR 999077, PR China
| | - Chao Wu
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium; Department of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Yan Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| |
Collapse
|
2
|
Tong X, Zhang ZW, Wu YH, Bai Y, Ikuno N, Ishii K, Hu HY. Ultrafiltration significantly increased the scaling potential of municipal secondary effluent on reverse osmosis membranes. WATER RESEARCH 2022; 220:118672. [PMID: 35635920 DOI: 10.1016/j.watres.2022.118672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Ultrafiltration (UF) was often used as pretreatment in front of reverse osmosis (RO) unit because of its high rejection efficiency of microbes and particles. However, in some cases UF pretreatment might show adverse effects on the RO membrane flux. In this study, the effects of UF pretreatment on secondary effluent water quality and its RO membrane fouling characteristics were explored. There was almost no change of water quality after UF with different molecular weight cut-off (MWCO) membranes (100, 30 and 10 kDa), including total dissolved solid (TDS), alkalinity, conductivity, ion concentrations, etc., while pH increased a little and dissolved organic carbon (DOC) declined by about 1 mg/L. On the contrary, the RO membrane flux of UF permeates presented clear decline in comparison to the secondary effluent. The membrane fouling velocity and steady-state flux of secondary effluent was 0.052 and 0.656, while fouling velocity increased (0.077, 0.071, 0.067) and steady-state flux decreased significantly (0.397, 0.416, 0.448) after 100, 30, 10 kDa UF membrane pretreatment. Scanning electron microscope (SEM) images showed many crystals on the fouled membrane surfaces, which turned out to be CaCO3 by Energy dispersive spectrometer (EDS) analysis and precipitation calculation. After the addition of UF retentates to UF permeates, scaling was prevented and crystals on the RO membrane almost disappeared, which implied the anti-scaling effect of the UF retentates with low concentration. According to anti-scaling performance experiments, the anti-scaling performance of 100 k, 30 k, 10 k retentates was 2.7%, 4.0% and 7.3%, respectively. Excitation emission matrix (EEM) and fourier transform infra-red (FTIR) results showed that these retentates retained by different MWCO membranes were similar and composed of protein-like substances and soluble microbial products. The effect of key minority components in RO system deserved further exploration.
Collapse
Affiliation(s)
- Xin Tong
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China
| | - Zi-Wei Zhang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Yuan Bai
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China
| | - Nozomu Ikuno
- Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan
| | - Kazuki Ishii
- Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, Jiangsu 215163, PR China
| |
Collapse
|
3
|
Oyarce E, Roa K, Boulett A, Sotelo S, Cantero-López P, Sánchez J, Rivas BL. Removal of Dyes by Polymer-Enhanced Ultrafiltration: An Overview. Polymers (Basel) 2021; 13:3450. [PMID: 34641265 PMCID: PMC8512745 DOI: 10.3390/polym13193450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
The current problem of contamination caused by colored industrial effluents has led to the development of different techniques to remove these species from water. One of them, polymer-enhanced ultrafiltration (PEUF), has been systematically studied in this mini review, in which research works from 1971 to date were found and analyzed. Dye retention rates of up to 99% were obtained in several cases. In addition, a brief discussion of different parameters, such as pH, interfering salts, type of polymer, dye concentration, and membrane type, and their influence in dye removal is presented. It was concluded from the above that these factors can be adapted depending on the pollutant to be remediated, in order to optimize the process. Finally, theoretical approaches have been used to understand the intermolecular interactions, and development of the studied technique. In this revision, it is possible to observe that molecular docking, molecular dynamics simulations, density functional theory calculations, and hybrid neural-genetic algorithms based on an evolutionary approach are the most usual approximations used for this purpose. Herein, there is a detailed discussion about what was carried out in order to contribute to the research development of this important science field.
Collapse
Affiliation(s)
- Estefanía Oyarce
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (E.O.); (K.R.); (A.B.); (S.S.)
| | - Karina Roa
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (E.O.); (K.R.); (A.B.); (S.S.)
| | - Andrés Boulett
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (E.O.); (K.R.); (A.B.); (S.S.)
| | - Sebastián Sotelo
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (E.O.); (K.R.); (A.B.); (S.S.)
| | - Plinio Cantero-López
- Relativistic Molecular Physics Group (ReMoPh), PhD Program in Molecular Physical Chemistry, Facultad de Ciencias Exactas, Universidad Andres Bello, República 275, Santiago 8370143, Chile;
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 330, Santiago 8370186, Chile
| | - Julio Sánchez
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (E.O.); (K.R.); (A.B.); (S.S.)
| | - Bernabé L. Rivas
- Polymer Department, Faculty of Chemistry, University of Concepción, Concepción 4030000, Chile;
| |
Collapse
|
4
|
Effect of Cellulose and Cellulose Nanocrystal Contents on the Biodegradation, under Composting Conditions, of Hierarchical PLA Biocomposites. Polymers (Basel) 2021; 13:polym13111855. [PMID: 34199684 PMCID: PMC8199790 DOI: 10.3390/polym13111855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
In this work, the effect of microfibrillated cellulose (MFC) and cellulose nanocrystals (CNCs) on the biodegradation, under composting conditions, of hierarchical PLA biocomposites (HBCs) was studied using a full 22 factorial experimental design. The HBCs were prepared by extrusion processing and were composted for 180 days. At certain time intervals, the specimens were removed from the compost for their chemical, thermal and morphological characterizations. An ANOVA analysis was carried out at different composting times to study MFC and CNCs’ effects on biodegradation. The specimen’s mass loss and molecular weight loss were selected as independent variables. The results show that the presence of MFC enhances the PLA biodegradation, while with CNCs it decreases. However, when both cellulosic fibers are present, a synergistic effect was evident—i.e., in the presence of the MFC, the inclusion of the CNCs accelerates the HBCs biodegradation. Analysis of the ANOVA results confirms the relevance of the synergistic role between both cellulosic fibers over the HBC biodegradation under composting conditions. The results also suggest that during the first 90 days of incubation, the hydrolytic PLA degradation prevails, whereas, beyond that, the enzymatic microbial biodegradation dominates. The SEM results show MFC’s presence enhances the surface biodeterioration to a greater extent than the CNCs and that their simultaneous presence enhances PLA biodegradation. The SEM results also indicate that the biodegradation process begins from hydrophilic cellulosic fibers and promotes PLA biodegradation.
Collapse
|