1
|
Ponomar M, Ruleva V, Sarapulova V, Pismenskaya N, Nikonenko V, Maryasevskaya A, Anokhin D, Ivanov D, Sharma J, Kulshrestha V, Améduri B. Structural Characterization and Physicochemical Properties of Functionally Porous Proton-Exchange Membrane Based on PVDF-SPA Graft Copolymers. Int J Mol Sci 2024; 25:598. [PMID: 38203772 PMCID: PMC10779367 DOI: 10.3390/ijms25010598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Fluorinated proton-exchange membranes (PEMs) based on graft copolymers of dehydrofluorinated polyvinylidene fluoride (D-PVDF), 3-sulfopropyl acrylate (SPA), and 1H, 1H, 2H-perfluoro-1-hexene (PFH) were prepared via free radical copolymerization and characterized for fuel cell application. The membrane morphology and physical properties were studied via small-(SAXS) and wide-angle X-ray scattering (WAXS), SEM, and DSC. It was found that the crystallinity degree is 17% for PEM-RCF (co-polymer with SPA) and 16% for PEM-RCF-2 (copolymer with SPA and PFH). The designed membranes possess crystallite grains of 5-6 nm in diameter. SEM images reveal a structure with open pores on the surface of diameters from 20 to 140 nm. Their transport and electrochemical characterization shows that the lowest membrane area resistance (0.9 Ωcm2) is comparable to perfluorosulfonic acid PEMs (such as Nafion®) and polyvinylidene fluoride (PVDF) based CJMC cation-exchange membranes (ChemJoy Polymer Materials, China). Key transport and physicochemical properties of new and commercial membranes were compared. The PEM-RCF permeability to NaCl diffusion is rather high, which is due to a relatively low concentration of fixed sulfonate groups. Voltammetry confers that the electrochemical behavior of new PEM correlates to that of commercial cation-exchange membranes, while the ionic conductivity reveals an impact of the extended pores, as in track-etched membranes.
Collapse
Affiliation(s)
- Maria Ponomar
- Department of Physical Chemistry, Kuban State University, 350040 Krasnodar, Russia
| | - Valentina Ruleva
- Department of Physical Chemistry, Kuban State University, 350040 Krasnodar, Russia
| | - Veronika Sarapulova
- Department of Physical Chemistry, Kuban State University, 350040 Krasnodar, Russia
| | - Natalia Pismenskaya
- Department of Physical Chemistry, Kuban State University, 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Department of Physical Chemistry, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia (B.A.)
| | - Alina Maryasevskaya
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia (B.A.)
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Denis Anokhin
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia (B.A.)
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry Russian Academy of Sciences, 142432 Chernogolovka, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Dimitri Ivanov
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia (B.A.)
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry Russian Academy of Sciences, 142432 Chernogolovka, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, 68057 Mulhouse, France
| | - Jeet Sharma
- Institute Charles Gerhardt, CNRS, University of Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 34000 Montpellier, France;
- Membrane Science and Separation Technology Division, Council of Scientific and Industrial Research, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vaibhav Kulshrestha
- Membrane Science and Separation Technology Division, Council of Scientific and Industrial Research, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bruno Améduri
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia (B.A.)
- Institute Charles Gerhardt, CNRS, University of Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 34000 Montpellier, France;
| |
Collapse
|
2
|
Lee JM, Kang MS. Heterogeneous Anion-Exchange Membranes with Enhanced Ion Conductivity for Continuous Electrodeionization. MEMBRANES 2023; 13:888. [PMID: 38132892 PMCID: PMC10744961 DOI: 10.3390/membranes13120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
In this study, the optimal fabrication parameters of a heterogeneous anion-exchange membrane (AEM) using an ionomer binder are investigated to improve the performance of continuous electrodeionization (CEDI) for producing ultrapure water. Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) is selected as the base material for preparing the ionomer binder and quaternized to have various ion exchange capacities (IECs). The optimal content of ion-exchange resin (IER) powder according to the IEC of the ionomer binder is then determined through systematic analyses. In conclusion, it is revealed that a heterogeneous AEM with optimal performance can be fabricated when the IEC of the ionomer binder is lowered and the content of IER powder is also lower than that of conventional heterogeneous membranes. Moreover, crosslinked quaternized PPO (QPPO) nanofiber powder is used as an additive to improve ion conductivity without deteriorating the mechanical properties of the membrane. The membrane fabricated under optimal conditions exhibits significantly lower electrical resistance (4.6 Ω cm2) despite a low IER content (30 wt%) compared to the commercial membrane (IONAC MA-3475, 13.6 Ω cm2) while also demonstrating moderate tensile strength (9.7 MPa) and a high transport number (ca. 0.97). Furthermore, it is proven that the prepared membrane exhibits a superior ion removal rate (99.86%) and lower energy consumption (0.35 kWh) compared to the commercial membrane (99.76% and 0.4 kWh, respectively) in CEDI experiments.
Collapse
Affiliation(s)
| | - Moon-Sung Kang
- Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea;
| |
Collapse
|
3
|
Falina I, Loza N, Brovkina M, Titskaya E, Timofeev S, Kononenko N. Electrotransport Properties of Perfluorinated Cation-Exchange Membranes of Various Thickness. MEMBRANES 2023; 13:873. [PMID: 37999359 PMCID: PMC10673526 DOI: 10.3390/membranes13110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
The present work discusses the influence of the thickness of MF-4SK perfluorinated sulfonic cation-exchange membranes on their electrotransport properties in hydrochloric acid solutions. It is found that diffusion permeability and conductivity are primarily determined with the specific water content of the membranes and increase with their increase. Analysis of the contribution of reverse diffusion through the membrane to the value of the limiting current shows that it can reach 20% for membranes with a thickness of 60 μm. A study of the characteristics of the fuel cell with perfluorinated membranes of different thicknesses shows that the membrane thickness affects both the ohmic resistance of the membrane-electrode assembly and the diffusion limitations of proton transport in polymer electrolytes.
Collapse
Affiliation(s)
- Irina Falina
- Physical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia; (N.L.); (M.B.); (E.T.); (N.K.)
| | - Natalia Loza
- Physical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia; (N.L.); (M.B.); (E.T.); (N.K.)
| | - Marina Brovkina
- Physical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia; (N.L.); (M.B.); (E.T.); (N.K.)
| | - Ekaterina Titskaya
- Physical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia; (N.L.); (M.B.); (E.T.); (N.K.)
| | | | - Natalia Kononenko
- Physical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia; (N.L.); (M.B.); (E.T.); (N.K.)
| |
Collapse
|
4
|
Loza N, Falina I, Kutenko N, Shkirskaya S, Loza J, Kononenko N. Bilayer Heterogeneous Cation Exchange Membrane with Polyaniline Modified Homogeneous Layer: Preparation and Electrotransport Properties. MEMBRANES 2023; 13:829. [PMID: 37888001 PMCID: PMC10608705 DOI: 10.3390/membranes13100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
A bilayer membrane based on a heterogenous cation exchange membrane with a homogeneous cation exchange layer and a polyaniline on its surface is prepared. The intercalation of polyaniline into the membrane with a homogeneous cation exchange layer is performed by oxidative polymerization of aniline. The influence of the homogeneous cation exchange layer and the polyaniline on the structure, conductivity, diffusion permeability, selectivity, and current-voltage curve of the heterogeneous cation exchange membrane is established. Membrane properties are studied in the HCl, NaCl, and CaCl2 solutions. The homogeneous cation exchange layer has a negligible effect on the transport properties of the initial heterogeneous membrane. The polyaniline synthesis leads to a decrease in the macropore volume in the membrane structure, conductivity, and diffusion permeability. The counterion transport number in the bilayer membrane is significantly reduced in a solution of calcium chloride and practically does not change in sodium chloride and hydrochloric acid. In addition, the asymmetry of the diffusion permeability and shape of current-voltage curve depending on the orientation of the membrane surface to the flux of electrolyte or counterion are found.
Collapse
Affiliation(s)
| | - Irina Falina
- Physical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia; (N.L.); (N.K.); (S.S.); (J.L.); (N.K.)
| | | | | | | | | |
Collapse
|
5
|
Tsygurina K, Pasechnaya E, Chuprynina D, Melkonyan K, Rusinova T, Nikonenko V, Pismenskaya N. Electrodialysis Tartrate Stabilization of Wine Materials: Fouling and a New Approach to the Cleaning of Aliphatic Anion-Exchange Membranes. MEMBRANES 2022; 12:1187. [PMID: 36557094 PMCID: PMC9785266 DOI: 10.3390/membranes12121187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Electrodialysis (ED) is an attractive method of tartrate stabilization of wine due to its rapidity and reagentlessness. At the same time, fouling of ion-exchange membranes by the components of wine materials is still an unsolved problem. The effect of ethanol, polyphenols (mainly anthocyanins and proanthocyanidins) and saccharides (fructose) on the fouling of aliphatic ion-exchange membranes CJMA-6 and CJMC-5 (manufactured by Hefei Chemjoy Polymer Materials Co. Ltd., Hefei, China) was analyzed using model solutions. It was shown that the mechanism and consequences of fouling are different in the absence of an electric field and during electrodialysis. In particular, a layer of colloidal particles is deposited on the surface of the CJMA-6 anion-exchange membrane in underlimiting current modes. Its thickness increases with increasing current density, apparently due to the implementation of a trap mechanism involving tartaric acid anions, as well as protons, which are products of water splitting and "acid dissociation". A successful attempt was made to clean CJMA-6 in operando by pumping a water-alcohol solution of KCl through the desalination compartment and changing electric field direction. It has been established that such a cleaning process suppresses the subsequent biofouling of ion-exchange membranes. In addition, selective recovery of polyphenols with high antioxidant activity is possible.
Collapse
Affiliation(s)
- Kseniia Tsygurina
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
| | | | - Daria Chuprynina
- Department of Analytical Chemistry, Kuban State University, 350040 Krasnodar, Russia
| | - Karina Melkonyan
- Central Research Laboratory, Kuban State Medical University, 350040 Krasnodar, Russia
| | - Tatyana Rusinova
- Central Research Laboratory, Kuban State Medical University, 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
| | | |
Collapse
|
6
|
High Diffusion Permeability of Anion-Exchange Membranes for Ammonium Chloride: Experiment and Modeling. Int J Mol Sci 2022; 23:ijms23105782. [PMID: 35628589 PMCID: PMC9147341 DOI: 10.3390/ijms23105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
It is known that ammonium has a higher permeability through anion exchange and bipolar membranes compared to K+ cation that has the same mobility in water. However, the mechanism of this high permeability is not clear enough. In this study, we develop a mathematical model based on the Nernst−Planck and Poisson’s equations for the diffusion of ammonium chloride through an anion-exchange membrane; proton-exchange reactions between ammonium, water and ammonia are taken into account. It is assumed that ammonium, chloride and OH− ions can only pass through membrane hydrophilic pores, while ammonia can also dissolve in membrane matrix fragments not containing water and diffuse through these fragments. It is found that due to the Donnan exclusion of H+ ions as coions, the pH in the membrane internal solution increases when approaching the membrane side facing distilled water. Consequently, there is a change in the principal nitrogen-atom carrier in the membrane: in the part close to the side facing the feed NH4Cl solution (pH < 8.8), it is the NH4+ cation, and in the part close to distilled water, NH3 molecules. The concentration of NH4+ reaches almost zero at a point close to the middle of the membrane cross-section, which approximately halves the effective thickness of the diffusion layer for the transport of this ion. When NH3 takes over the nitrogen transport, it only needs to pass through the other half of the membrane. Leaving the membrane, it captures an H+ ion from water, and the released OH− moves towards the membrane side facing the feed solution to meet the NH4+ ions. The comparison of the simulation with experiment shows a satisfactory agreement.
Collapse
|
7
|
Recovery of Nutrients from Residual Streams Using Ion-Exchange Membranes: Current State, Bottlenecks, Fundamentals and Innovations. MEMBRANES 2022; 12:membranes12050497. [PMID: 35629823 PMCID: PMC9145069 DOI: 10.3390/membranes12050497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 11/23/2022]
Abstract
The review describes the place of membrane methods in solving the problem of the recovery and re-use of biogenic elements (nutrients), primarily trivalent nitrogen NIII and pentavalent phosphorus PV, to provide the sustainable development of mankind. Methods for the recovery of NH4+ − NH3 and phosphates from natural sources and waste products of humans and animals, as well as industrial streams, are classified. Particular attention is paid to the possibilities of using membrane processes for the transition to a circular economy in the field of nutrients. The possibilities of different methods, already developed or under development, are evaluated, primarily those that use ion-exchange membranes. Electromembrane methods take a special place including capacitive deionization and electrodialysis applied for recovery, separation, concentration, and reagent-free pH shift of solutions. This review is distinguished by the fact that it summarizes not only the successes, but also the “bottlenecks” of ion-exchange membrane-based processes. Modern views on the mechanisms of NH4+ − NH3 and phosphate transport in ion-exchange membranes in the presence and in the absence of an electric field are discussed. The innovations to enhance the performance of electromembrane separation processes for phosphate and ammonium recovery are considered.
Collapse
|
8
|
Apel PY, Velizarov S, Volkov AV, Eliseeva TV, Nikonenko VV, Parshina AV, Pismenskaya ND, Popov KI, Yaroslavtsev AB. Fouling and Membrane Degradation in Electromembrane and Baromembrane Processes. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s2517751622020032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Zhou J, Wang Y, Zhou J, Chen K, Han L. Well-defined hollow tube@sheets NiCo 2S 4 core-shell nanoarrays for ultrahigh capacitance supercapacitor. Dalton Trans 2021; 50:15129-15139. [PMID: 34612303 DOI: 10.1039/d1dt02666f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Reasonable design of electrodes with well-defined nanostructure is the central aspect in the practical application of high-performance supercapacitors. Herein, hollow tube@sheets NiCo2S4 core-shell nanoarrays are rationally constructed to the free-standing electrode by in situ growing ZIF-67 on Co-precursor nanorods array and sequentially performing anion-exchange (S2-) and cation-exchange (Ni2+). The well-defined nanostructures can shorten the ion transport path in the charging-discharging process, increase the specific surface area and electrochemical active cites, which help in improving electrochemical performance. Therefore, the unique tube@sheets NiCo2S4 core-shell nanoarrays exhibit intriguing electrochemical performance and show excellent areal capacitance of 11.3 F cm-2 (3227.94 F g-1) at a current density of 2 mA cm-2 (2 A g-1). The assembled asymmetric supercapacitor device delivers a high energy density of 0.42 mW h cm-2 at a power density of 2.1 mW cm-2 and displays outstanding cyclic stability (90.2% retention after 5000 cycles). Consequently, the well-defined nanostructure engineering strategy is beneficial for designing active electrode materials for efficient energy storage devices.
Collapse
Affiliation(s)
- Jiachao Zhou
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Yingchao Wang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Jiaojiao Zhou
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Kang Chen
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Lei Han
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
10
|
Melnikova ED, Tsygurina KA, Pismenskaya ND, Nikonenko VV. Influence of Protonation–Deprotonation Reactions on the Diffusion of Ammonium Chloride through Anion-Exchange Membrane. MEMBRANES AND MEMBRANE TECHNOLOGIES 2021. [DOI: 10.1134/s2517751621050085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Hansima MACK, Makehelwala M, Jinadasa KBSN, Wei Y, Nanayakkara KGN, Herath AC, Weerasooriya R. Fouling of ion exchange membranes used in the electrodialysis reversal advanced water treatment: A review. CHEMOSPHERE 2021; 263:127951. [PMID: 33297020 DOI: 10.1016/j.chemosphere.2020.127951] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 06/12/2023]
Abstract
Electrodialysis self-reversal (EDR) technology has attracted in the treatment of water for domestic and industrial uses. The self-reversal consists of a frequent reversal of the direction of current between the EDR-cell electrodes to combat fouling of ion exchange membranes (IEMs). Irrespective of the EDR self-cleaning processes, the role of natural organic matter and their complexing ability with metal ions on IEMs fouling is partially understood. The objective of this review is to identify the research gaps present in the elucidation of IEM fouling routes. The common IEMs' foulants are identified, and several fouling mechanisms are briefly discussed. The effectiveness of self-cleaning mechanisms to reduce IEMs fouling is also be discussed. Dissolved organic carbon (DOC) possesses high chelation which forms metal complexes with di and trivalent cations found in water. The role of ternary complexes, e.g. M2+/3+-DOC and membrane surface, on membrane fouling via surface bridging, are also addressed. Finally, mitigation methods of IEMs membrane fouling are also discussed.
Collapse
Affiliation(s)
- M A C K Hansima
- Post Graduate Institute of Science (PGIS), University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Madhubhashini Makehelwala
- NSF Project, Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka; China-Sri Lanka Joint Research and Demonstration Center for Water Technology, Ministry of Water Supply, Sri Lanka.
| | - K B S N Jinadasa
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Yuansong Wei
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; National Centre for Water Quality Research, National Institute of Fundamental Studies, Kandy, 20000, Sri Lanka
| | - K G N Nanayakkara
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Ajith C Herath
- Department of Chemical Sciences, Rajarata University of Sri Lanka, Mihinthale, 50300, Sri Lanka
| | - Rohan Weerasooriya
- National Centre for Water Quality Research, National Institute of Fundamental Studies, Kandy, 20000, Sri Lanka
| |
Collapse
|
12
|
Energy Harvesting by Waste Acid/Base Neutralization via Bipolar Membrane Reverse Electrodialysis. ENERGIES 2020. [DOI: 10.3390/en13205510] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bipolar Membrane Reverse Electrodialysis (BMRED) can be used to produce electricity exploiting acid-base neutralization, thus representing a valuable route in reusing waste streams. The present work investigates the performance of a lab-scale BMRED module under several operating conditions. By feeding the stack with 1 M HCl and NaOH streams, a maximum power density of ~17 W m−2 was obtained at 100 A m−2 with a 10-triplet stack with a flow velocity of 1 cm s−1, while an energy density of ~10 kWh m−3 acid could be extracted by a complete neutralization. Parasitic currents along feed and drain manifolds significantly affected the performance of the stack when equipped with a higher number of triplets. The apparent permselectivity at 1 M acid and base decreased from 93% with the five-triplet stack to 54% with the 38-triplet stack, which exhibited lower values (~35% less) of power density. An important role may be played also by the presence of NaCl in the acidic and alkaline solutions. With a low number of triplets, the added salt had almost negligible effects. However, with a higher number of triplets it led to a reduction of 23.4–45.7% in power density. The risk of membrane delamination is another aspect that can limit the process performance. However, overall, the present results highlight the high potential of BMRED systems as a productive way of neutralizing waste solutions for energy harvesting.
Collapse
|
13
|
Gurreri L, Tamburini A, Cipollina A, Micale G. Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives. MEMBRANES 2020; 10:E146. [PMID: 32660014 PMCID: PMC7408617 DOI: 10.3390/membranes10070146] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022]
Abstract
This paper presents a comprehensive review of studies on electrodialysis (ED) applications in wastewater treatment, outlining the current status and the future prospect. ED is a membrane process of separation under the action of an electric field, where ions are selectively transported across ion-exchange membranes. ED of both conventional or unconventional fashion has been tested to treat several waste or spent aqueous solutions, including effluents from various industrial processes, municipal wastewater or salt water treatment plants, and animal farms. Properties such as selectivity, high separation efficiency, and chemical-free treatment make ED methods adequate for desalination and other treatments with significant environmental benefits. ED technologies can be used in operations of concentration, dilution, desalination, regeneration, and valorisation to reclaim wastewater and recover water and/or other products, e.g., heavy metal ions, salts, acids/bases, nutrients, and organics, or electrical energy. Intense research activity has been directed towards developing enhanced or novel systems, showing that zero or minimal liquid discharge approaches can be techno-economically affordable and competitive. Despite few real plants having been installed, recent developments are opening new routes for the large-scale use of ED techniques in a plethora of treatment processes for wastewater.
Collapse
Affiliation(s)
| | - Alessandro Tamburini
- Dipartimento di Ingegneria, Università degli Studi di Palermo, viale delle Scienze Ed. 6, 90128 Palermo, Italy; (L.G.); (A.C.); (G.M.)
| | | | | |
Collapse
|