1
|
Hu QQ, Chen QF, Zhang HT, Chen JY, Liao RZ, Zhang MT. Selective hydroxylation of benzene to phenol via Cu II(μ-O˙)Cu II intermediate using a nonsymmetric dicopper catalyst. Dalton Trans 2025; 54:1896-1904. [PMID: 39688361 DOI: 10.1039/d4dt02872d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The one-step oxidation of benzene to phenol represents a significant and promising advancement in modern industries focused on the production of high-value-added chemical products. Nevertheless, challenges persist in achieving sufficient catalytic selectivity and preventing over-oxidation. Inspired by copper enzymes, we present a nonsymmetric dicopper complex ([CuII2(TPMAN)(μ-OH)(H2O)]3+, 1) for the selective oxidation of benzene to phenol. Utilizing H2O2 as the oxidant, complex 1 demonstrates remarkable catalytic activity (a TON of 14 000 within 29 hours) and selectivity exceeding 97%, comparable to the finest homogeneous catalyst derived from first-row transition metals. It is noteworthy that the significant substituent effect, alongside a negligible kinetic isotope effect (KIE = 1.05), radical trapping experiments, and an inconsistent standard selectivity test of the ˙OH radicals, all contradict the conventional Fenton mechanism and rebound pathway. Theoretical investigations indicate that the active CuII(μ-O˙)CuII-OH species generated through the cleavage of the O-O bond in the CuII(μ-1,1-OOH)CuI intermediate facilitates the hydroxylation of benzene via an electrophilic attack mechanism. The nonsymmetric coordination geometry is crucial in activating H2O2 and in the process of O-O bond cleavage.
Collapse
Affiliation(s)
- Qin-Qin Hu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Qi-Fa Chen
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Hong-Tao Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Jia-Yi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Li Y, Qi Q, Shan S, Yao Z, Liu F, Zhu B. The stabilization of ultrafiltration membrane blended with randomly structured amphiphilic copolymer: Micropollutants adsorption properties in filtration processes. J Colloid Interface Sci 2022; 613:234-243. [PMID: 35042024 DOI: 10.1016/j.jcis.2022.01.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/22/2022]
Abstract
In this study, a blend membrane consisting of polyvinylidene fluoride (PVDF) and tertiary amine containing random copolymer poly(methyl methacrylate-r-dimethylamino-2-ethyl methacrylate) (P(MMA-r-DMAEMA)) was fabricated and utilized as an adsorptive membrane for micropollutants (anionic dye and heavy metal ions) removal from aqueous solutions. Cross-linking the random copolymer by p-xylylene dichloride (XDC) produced the membrane with improved copolymer retention ratio and stability, while slightly variated physicochemical properties. Besides, the fluxes of crosslinked blend membranes dramatically increased from 0.7 ± 0.1 L/(m2h) to 118.6 ± 5.9 L/(m2h). Then the present blend membrane was carried out adsorption and filtration experiments to investigate the influence of various of operation parameters including initial solution pH value, contacting time, initial solution concentration, and recycling efficiency on micropollutants removal. The experimental results showed that the removal of the anionic dyes and heavy metal ions on this tertiary amine containing blend membrane was a pH-dependent process with the maximum adsorption capacity at the initial solution pH of 3.5 for anionic dyes and 6.0 for metal ions, respectively. The membrane showed highly efficient capture of sunset yellow (above 99%). Meanwhile, the captured sunset yellow was recovered and concentrated with a small volume of alkaline solutions at pH 10.0, which simultaneously regenerated the membrane for its reuse. In a 3-cycle capture-recovery test, the membrane demonstrated a high sunset yellow recovery ratio and a volumetric concentration ratio as high as 400%. Our study provides an alternative strategy for functionalized membrane fabrication, micropollutants removal and recovery.
Collapse
Affiliation(s)
- Ying Li
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
| | - Quan Qi
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
| | - Shengdao Shan
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
| | - Zhikan Yao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China; Engineering Research Center of Membrane and Water Treatment (Ministry of Education), Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Fu Liu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Baoku Zhu
- Engineering Research Center of Membrane and Water Treatment (Ministry of Education), Zhejiang University, Hangzhou, 310027, P. R. China; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| |
Collapse
|
3
|
Wu Y, Zhang X, Wang F, Zhai Y, Cui X, Lv G, Jiang T, Hu J. Synergistic Effect between Fe and Cu Species on Mesoporous Silica for Hydroxylation of Benzene to Phenol. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuzhou Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Xubin Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Fumin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yi Zhai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Xianbao Cui
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Guojun Lv
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Tao Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Jiaqi Hu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|