1
|
Le Mong A, Shin JC, Lee M, Kim D. Accelerated Single Li-Ion Transport in Solid Electrolytes for Lithium-Sulfur Batteries: Poly(Arylene Ether Sulfone) Grafted with Pyrrolidinium-Terminated Poly(Ethylene Glycol). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309162. [PMID: 38152973 DOI: 10.1002/smll.202309162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Polymeric solid electrolytes have attracted tremendous interest in high-safety and high-energy capacity lithium-sulfur (Li─S) batteries. There is, however, still a dilemma to concurrently attain high Li-ion conductivity and high mechanical strength that effectively suppress the Li-dendrite growth. Accordingly, a rapidly Li-ion conducting solid electrolyte is prepared by grafting pyrrolidinium cation (PYR+)-functionalized poly(ethylene glycol) onto the poly(arylene ether sulfone) backbone (PAES-g-2PEGPYR). The PYR+ groups effectively immobilize anions of Li-salts in Li-conductive PEGPYR domains phase-separated from PAES matrix to enhance the single-ion conduction. The tailored PAES-g-2PEGPYR membrane shows a high Li-ion transference number of 0.601 and superior ionic conductivity of 1.38 mS cm-1 in the flexible solid state with the tensile strength of 1.0 MPa and Young's modulus of 1.5 MPa. Moreover, this PAES-g-2PEGPYR membrane exhibits a high oxidation potential (5.5 V) and high thermal stability up to 200 (C. The Li/PAES-g-2PEGPYR/Li cell stably operates for 1000 h without any short circuit, and the rechargeable Li/PAES-g-2PEGPYR/S cell discharges a capacity of 1004.7 mAh g-1 at C/5 with the excellent rate capability and the prominent cycling performance of 95.3% retention after 200 cycles.
Collapse
Affiliation(s)
- Anh Le Mong
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jong Chan Shin
- Department of Chemistry, Kunsan National University, 558, Daehak-ro, Gunsan, Jeollabuk-do, 54150, Republic of Korea
| | - Minjae Lee
- Department of Chemistry, Kunsan National University, 558, Daehak-ro, Gunsan, Jeollabuk-do, 54150, Republic of Korea
| | - Dukjoon Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
2
|
Yun H, Cho J, Ryu S, Pyo S, Kim H, Lee J, Min B, Cho YH, Seo H, Yoo J, Kim YS. Surface Oxygen Vacancy Inducing Li-Ion-Conducting Percolation Network in Composite Solid Electrolytes for All-Solid-State Lithium-Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207223. [PMID: 36808806 DOI: 10.1002/smll.202207223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/03/2023] [Indexed: 06/02/2023]
Abstract
Composite solid electrolytes (CSEs) are newly emerging components for all-solid-state Li-metal batteries owing to their excellent processability and compatibility with the electrodes. Moreover, the ionic conductivity of the CSEs is one order of magnitude higher than the solid polymer electrolytes (SPEs) by incorporation of inorganic fillers into SPEs. However, their advancement has come to a standstill owing to unclear Li-ion conduction mechanism and pathway. Herein, the dominating effect of the oxygen vacancy (Ovac ) in the inorganic filler on the ionic conductivity of CSEs is demonstrated via Li-ion-conducting percolation network model. Based on density functional theory, indium tin oxide nanoparticles (ITO NPs) are selected as inorganic filler to determine the effect of Ovac on the ionic conductivity of the CSEs. Owing to the fast Li-ion conduction through the Ovac inducing percolation network on ITO NP-polymer interface, LiFePO4 /CSE/Li cells using CSEs exhibit a remarkable capacity in long-term cycling (154 mAh g-1 at 0.5C after 700 cycles). Moreover, by modifying the Ovac concentration of ITO NPs via UV-ozone oxygen-vacancy modification, the ionic conductivity dependence of the CSEs on the surface Ovac from the inorganic filler is directly verified.
Collapse
Affiliation(s)
- Heejun Yun
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinil Cho
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokgyu Ryu
- School of Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seonmi Pyo
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heebae Kim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeewon Lee
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byeongyun Min
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong Hyun Cho
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Harim Seo
- School of Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeeyoung Yoo
- School of Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Youn Sang Kim
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Suwon, 16229, Republic of Korea
| |
Collapse
|
3
|
Nguyen AG, Park CJ. Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
4
|
Hu Z, Zhang Y, Fan W, Li X, Huo S, Jing X, Bao W, Zhang Y, Cheng H. Flexible, high-temperature-resistant, highly conductive, and porous siloxane-based single-ion conducting electrolyte membranes for safe and dendrite-free lithium-metal batteries. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Fang L, Sun W, Hou W, Wang Z, Sun K. A high-safety electrolyte based on functionalized ionic liquid and polyurethane for lithium batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Cai D, Zhang S, Su M, Ma Z, Zhu J, Zhong Y, Luo X, Wang X, Xia X, Gu C, Tu J. Cellulose mesh supported ultrathin ceramic-based composite electrolyte for high-performance Li metal batteries. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Hu Z, Zhang Y, Long X, Bao W, Zhang Y, Fan W, Cheng H. Hydroxyl-rich single-ion conductors enable solid hybrid polymer electrolytes with excellent compatibility for dendrite-free lithium metal batteries. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Li Z, Aboalsaud AM, Liu X, Thankamony RL, Chen IC, Li Y, Lai Z. Scalable fabrication of Solvent-Free composite solid electrolyte by a continuous Thermal-Extrusion process. J Colloid Interface Sci 2022; 628:64-71. [PMID: 35908432 DOI: 10.1016/j.jcis.2022.07.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/09/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
Composite solid-state electrolytes (CSEs) are regarded as a promising alternative for the next-generation lithium-ion batteries because they integrate the advantages of inorganic electrolytes and organic electrolytes. However, there are two issues faced by current CSEs: 1) a green and feasible approach to prepare CSEs in large scales is desired; and 2) the trace solvents, remaining from the preparation processes, lead to some serious concerns, such as safety hazard issues, electrolyte-electrode interfacial issues, and reduced durability of batteries. Here, a continuous thermal-extrusion process is presented to realize the large-scale fabrication of solvent-free CSE. A 38.7-meter CSE membrane was prepared as a demonstration in this study. Thanks to the elimination of residual solvents, the electrolyte membrane exhibited a high tensile strength of 3.85 MPa, satisfactory lithium transference number (0.495), and excellent electrochemical stability (5.15 V). Excellent long-term stability was demonstrated by operating the symmetric lithium cell at a stable current density of 0.1 mA cm-2 for over 3700 h. Solvent-free CSE lithium metal batteries showed a discharge capacity of 155.7 - 25.17 mAh g-1 at 0.1 - 2.0C, and the discharge capacity remained 78.1% after testing for 380cycles.
Collapse
Affiliation(s)
- Zhen Li
- Advanced Membranes and Porous Materials Centre, Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ammar M Aboalsaud
- Advanced Membranes and Porous Materials Centre, Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xiaowei Liu
- Advanced Membranes and Porous Materials Centre, Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Roshni L Thankamony
- Advanced Membranes and Porous Materials Centre, Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - I-Chun Chen
- Advanced Membranes and Porous Materials Centre, Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yangxing Li
- Watt Research Lab, Central Research Institute, Huawei Technologies Co. Ltd., Bantian, Longgang District, Shenzhen 518129, China
| | - Zhiping Lai
- Advanced Membranes and Porous Materials Centre, Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
9
|
Shielding the electrostatic attraction by design of zwitterionic single ion conducting polymer electrolyte with high dielectric constant. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Wang B, Wang G, He P, Fan LZ. Rational design of ultrathin composite solid-state electrolyte for high-performance lithium metal batteries. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119952] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Importance of structures and interactions in ionic liquid-nanomaterial composite systems as a novel approach for their utilization in safe lithium metal batteries: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Chen Z, Yang Y, Su Q, Huang S, Song D, Ma R, Zhu C, Lv G, Li C. A Flexible Semi-Interpenetrating Network-Enhanced Ionogel Polymer Electrolyte for Highly Stable and Safe Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41946-41955. [PMID: 34445861 DOI: 10.1021/acsami.1c07745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An ionogel polymer electrolyte (IGPE), which combines the merits of high ionic conductivity and excellent safety property of a liquid electrolyte and a solid electrolyte, respectively, has shown great prospects in the application of a new generation of lithium secondary batteries. However, the increase in the ionic conductivity of IGPE will inevitably be at the expense of reduced mechanical strength, and this dilemma limits its application and market promotion. Here, an IGPE with a semi-interpenetrating cross-linked network structure was synthesized by UV-cross-linking to tackle this plight. The optimal sample ME82 shows an excellent ionic conductivity of 1.19 mS cm-1 at room temperature and robust mechanical strength (breaking strength: 1.55 MPa, elongation at break: 259%). Therefore, the assembled LiFePO4/ME82/Li cion cell displays an outstanding initial specific discharge capacity of 160.9 mAh g-1 at 55 °C 0.5 C, with a capacity retention of 94.00% after 200 cycles. In addition, ME82-based flexible batteries can withstand bending, folding, and even shearing abuse, which indicates that ME82 has application potentials in flexible electronic devices.
Collapse
Affiliation(s)
- Zheng Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yun Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qinting Su
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Songde Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dakun Song
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Caizhen Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guanghui Lv
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Cuihua Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
13
|
Abstract
Environmental issues related to energy consumption are mainly associated with the strong dependence on fossil fuels. To solve these issues, renewable energy sources systems have been developed as well as advanced energy storage systems. Batteries are the main storage system related to mobility, and they are applied in devices such as laptops, cell phones, and electric vehicles. Lithium-ion batteries (LIBs) are the most used battery system based on their high specific capacity, long cycle life, and no memory effects. This rapidly evolving field urges for a systematic comparative compilation of the most recent developments on battery technology in order to keep up with the growing number of materials, strategies, and battery performance data, allowing the design of future developments in the field. Thus, this review focuses on the different materials recently developed for the different battery components—anode, cathode, and separator/electrolyte—in order to further improve LIB systems. Moreover, solid polymer electrolytes (SPE) for LIBs are also highlighted. Together with the study of new advanced materials, materials modification by doping or synthesis, the combination of different materials, fillers addition, size manipulation, or the use of high ionic conductor materials are also presented as effective methods to enhance the electrochemical properties of LIBs. Finally, it is also shown that the development of advanced materials is not only focused on improving efficiency but also on the application of more environmentally friendly materials.
Collapse
|
14
|
Yao Z, Zhu K, Li X, Zhang J, Li J, Wang J, Yan K, Liu J. Double-Layered Multifunctional Composite Electrolytes for High-Voltage Solid-State Lithium-Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11958-11967. [PMID: 33656866 DOI: 10.1021/acsami.0c22532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The need for safe storage systems with a high energy density has increased the interest in high-voltage solid-state Li-metal batteries (LMBs). Solid-state electrolytes, as a key material for LMBs, must be stable against both high-voltage cathodes and Li anodes. However, the weak interfacial contact between the electrolytes and electrodes poses challenges in the practical applications of LMBs. In this study, a double-layered solid composite electrolyte (DLSCE) was synthesized by introducing an antioxidative poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)-10 wt % Li1.3Al0.3Ti1.7(PO4)3 (LATP) to the cathode interface, whereas a lithium-friendly poly(oxyethylene) (PEO)-5 wt % LATP was made to come into contact with Li metal. Owing to the heterogeneous double-layered structure of the DLSCE, a high ionic transfer number (0.43), high ionic conductivity (1.49 × 10-4 S/cm), and a wide redox window (4.82 V) were obtained at ambient temperature. Moreover, the DLSCE showed excellent Li-metal stability, thereby enabling the Li-Li symmetric cells to stably run for over 600 h at 0.2 mA/cm2 with effective lithium dendrite inhibition. When paired with a high-voltage LiNi1/3Co1/3Mn1/3O2 cathode, the Li/DLSCE/NCM111 cell exhibited excellent electrochemical performance: long-term cyclability with 85% capacity retention could be conducted at 0.2C after 100 cycles corresponding to 100% Coulombic efficiencies.
Collapse
Affiliation(s)
- Zhongran Yao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Kongjun Zhu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xia Li
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jie Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jun Li
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jing Wang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Kang Yan
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jinsong Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
15
|
Zhang Z, Huang Y, Gao H, Li C, Huang J, Liu P. 3D glass fiber cloth reinforced polymer electrolyte for solid-state lithium metal batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118940] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|