1
|
Aytaç E, Khanzada NK, Ibrahim Y, Khayet M, Hilal N. Reverse Osmosis Membrane Engineering: Multidirectional Analysis Using Bibliometric, Machine Learning, Data, and Text Mining Approaches. MEMBRANES 2024; 14:259. [PMID: 39728709 DOI: 10.3390/membranes14120259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Membrane engineering is a complex field involving the development of the most suitable membrane process for specific purposes and dealing with the design and operation of membrane technologies. This study analyzed 1424 articles on reverse osmosis (RO) membrane engineering from the Scopus database to provide guidance for future studies. The results show that since the first article was published in 1964, the domain has gained popularity, especially since 2009. Thin-film composite (TFC) polymeric material has been the primary focus of RO membrane experts, with 550 articles published on this topic. The use of nanomaterials and polymers in membrane engineering is also high, with 821 articles. Common problems such as fouling, biofouling, and scaling have been the center of work dedication, with 324 articles published on these issues. Wang J. is the leader in the number of published articles (73), while Gao C. is the leader in other metrics. Journal of Membrane Science is the most preferred source for the publication of RO membrane engineering and related technologies. Author social networks analysis shows that there are five core clusters, and the dominant cluster have 4 researchers. The analysis of sentiment, subjectivity, and emotion indicates that abstracts are positively perceived, objectively written, and emotionally neutral.
Collapse
Affiliation(s)
- Ersin Aytaç
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Department of Environmental Engineering, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Türkiye
| | - Noman Khalid Khanzada
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
| | - Yazan Ibrahim
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
- Chemical and Biomolecular Engineering Division, New York University, Brooklyn, NY 11201, USA
| | - Mohamed Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Madrid Institute for Advanced Studies of Water (IMDEA Water Institute), Avda. Punto Com N° 2, 28805 Madrid, Spain
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
2
|
Singh SK, Pandey A, Maiti A. Optimized preparation route for polyamide top-coated forward osmosis membrane for enhanced water flux using industrial wastewater as feed. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39454-39480. [PMID: 38822176 DOI: 10.1007/s11356-024-33742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
The forward osmosis (FO) process has recently gained significant interest in treating wastewater, brackish/seawater and concentrating feedstocks for various operations, including desalination. The study investigates the effect of different synthesis conditions of the polyamide-based thin-film composite (TFC) FO membranes on the membranes' final performance. Taguchi statistical analyses were used to fabricate and optimize the polyamide TFC FO membrane. The process parameters as factors were the amount of polyethersulfone (PES), polyethylene glycol 400 (PEG-400), polyvinyl pyrrolidone (PVP), m-phenylenediamine (MPD), and trimesoyl chloride (TMC), and TMC reaction-time (RT). The Taguchi method was adopted to investigate the optimal conditions and the significance of individual factors using an L16 (45) orthogonal array. Another Taguchi analysis (Taguchi 2) was adopted to investigate the influence of other important parameters like optimal conditions for MPD, TMC, and TMC reaction-time factors using an L9 (33) orthogonal array. Confirmation tests validated a maximum water flux of 46.4 ± 2.32 L/m2·h with a specific combination of control factors for membrane synthesis: PES/PEG/PVP/MPD/TMC/TMC RT-16/7/0.5/1/0.05/30. These tests demonstrated a high-water flux of 7.05 ± 0.35 L/m2·h when exposed to industrial wastewater (secondary effluent) as the feed solution (FS) and fertilizer as the draw solution (DS) in the FO process. The R2 values were more than 90%. The experimental validation confirmed the models' predictive ability with different FSs, including industrial wastewater.
Collapse
Affiliation(s)
- Satish Kumar Singh
- Department of Paper Technology, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, India, 247001
| | - Aaditya Pandey
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, India, 247001
| | - Abhijit Maiti
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, India, 247001.
| |
Collapse
|
3
|
He M, Feng L, Cui Q, Li Y, Wang J, Zhu J, Wang L, Wang X, Miao R. Forward osmosis membrane doped with water-based zirconium fumarate MOFs to enhance dye pollutant removal and membrane antifouling performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61018-61031. [PMID: 37046161 DOI: 10.1007/s11356-023-26670-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023]
Abstract
Metal-organic frameworks (MOFs) can be applied to enhance the property of forward osmosis membranes. However, organic solvents can easily remain in organic synthetic metal-organic frame materials and cause membrane fouling and a decrease in membrane permeability. In this study, water-based Zr-fumarate MOFs were synthesized and doped into the membrane active layer by interfacial polymerization to provide a water-based MOF-doped thin-film composite membrane (TFC membrane). It was found that doping the water-based MOFs effectively improved membrane hydrophilicity, and nanowater passages were introduced in the active layer to improve permeability. The water flux of the water-based MOF-doped TFC membranes was increased by 21% over that of the original membrane, and the selectivity performance of the membrane was improved while keeping the salt rejection basically unchanged. Additionally, the water-based MOF-doped TFC membrane showed good removal efficiency (Rd > 94%) and strong antipollution performance in the treatment of dye pollutants.
Collapse
Affiliation(s)
- Miaolu He
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Leihao Feng
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Qi Cui
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Yushuang Li
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Jiaqi Wang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Jiani Zhu
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Lei Wang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China.
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China.
- Key Laboratory of Northwest Water Resources, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China.
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China.
| | - Xudong Wang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Rui Miao
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| |
Collapse
|
4
|
Park C, Lei J, Kim JO. Mitigation of biofouling with co-deposition of polydopamine and curcumin on the surface of a thin-film composite membrane. CHEMOSPHERE 2023; 310:136910. [PMID: 36270524 DOI: 10.1016/j.chemosphere.2022.136910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Reverse osmosis (RO) membrane has been widely used in various water treatment fields as an efficient desalination technology, but serious biofouling problem arises in the actual application process. Curcumin is known as a natural compound that can reduce biofouling by inhibiting the growth of microorganisms based on quorum sensing. Dopamine, a molecule with excellent adhesion and functionalization on the material's surface, has high research value for applying a curcumin coating to the membrane surface. Curcumin degrades under alkaline conditions, whereas dopamine must polymerize under alkaline conditions. Simultaneously, a coating may adversely affect curcumin. Therefore, a two-step coating process was considered by self-polymerizing dopamine on the thin-film composite membrane surface and then dip-coating curcumin attached to the polydopamine layer. Furthermore, the effect of time and concentration on the surface modification before and after membrane modification was investigated. The highest permeability of 1.39 L/m2/hr/bar was achieved with the modified membranes. The number of gram-positive bacteria decreased from 6.71 × 106 to 9.67 × 105 CFU/mL. This result is meaningful for antifouling through modification of the membrane surface. Use of curcumin can be applied to reduce biofouling and extend the lifetime of the membrane without pretreatment or membrane cleaning.
Collapse
Affiliation(s)
- Chansoo Park
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Sungdong-Gu, Seoul, 04763, Republic of Korea
| | - Ji Lei
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Sungdong-Gu, Seoul, 04763, Republic of Korea
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Sungdong-Gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
5
|
Ates N, Uzal N, Yetis U, Dilek FB. Removal of pesticides from secondary treated urban wastewater by reverse osmosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8732-8745. [PMID: 35404035 DOI: 10.1007/s11356-022-20077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The residues of pesticides that reach water resources from agricultural activities in several ways contaminate drinking water resources and threaten aquatic life. This study aimed to investigate the performance of three reverse osmosis (RO) membranes (BW30-LE, SW30-XLE, and GE-AD) in rejecting four different pesticides (tributyl phosphate, flutriafol, dicofol, and irgarol) from secondary treated urban wastewater and also to elucidate the mechanisms underlying the rejection of these pesticides. RO experiments were conducted using pesticide-spiked wastewater samples under 10 and 20 bar transmembrane pressures (TMP) and membrane performances were evaluated. Overall, all the membranes tested exhibited over 95% rejection performances for all pesticides at both TMPs. The highest rejections for tributyl phosphate (99.0%) and irgarol (98.3%) were obtained with the BW30-LE membrane, while for flutriafol (99.9%) and dicofol (99.1%) with the GE-AD membrane. The increase in TMP from 10 to 20 bar did not significantly affect the rejections of all pesticides. The rejection performances of RO membranes were found to be governed by projection area as well as molecular weight and hydrophobicity/hydrophilicity of pesticides. Among the membranes tested, the SW30-XLE membrane was the most prone to fouling due to the higher roughness.
Collapse
Affiliation(s)
- Nuray Ates
- Department of Environmental Engineering, Erciyes University, Kayseri, Turkey.
| | - Nigmet Uzal
- Department of Civil Engineering, Abdullah Gul University, Kayseri, Turkey
| | - Ulku Yetis
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - Filiz B Dilek
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
6
|
Goh PS, Ahmad NA, Wong TW, Yogarathinam LT, Ismail AF. Membrane technology for pesticide removal from aquatic environment: Status quo and way forward. CHEMOSPHERE 2022; 307:136018. [PMID: 35973494 DOI: 10.1016/j.chemosphere.2022.136018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The noxious side effects of pesticides on human health and environment have prompted the search of effective and reliable treatment techniques for pesticide removal. The removal of pesticides can be accomplished through physical, chemical and biologicals. Physical approaches such as filtration and adsorption are prevailing pesticide removal strategies on account of their effectiveness and ease of operation. Membrane-based filtration technology has been recognized as a promising water and wastewater treatment approach that can be used for a wide range of organic micropollutants including pesticides. Nanofiltration (NF), reverse osmosis (RO) and forward osmosis (FO) have been increasingly explored for pesticide removal from aquatic environment owing to their versatility and high treatment efficiencies. This review looks into the remedial strategies of pesticides from aqueous environment using membrane-based processes. The potentials and applications of three prevailing membrane processes, namely NF, RO and FO for the treatment of pesticide-containing wastewater are discussed in terms of the development of advanced membranes, separation mechanisms and system design. The challenges in regards to the practical implementation of membrane-based processes for pesticide remediation are identified. The corresponding research directions and way forward are highlighted. An in depth understanding of the pesticide nature, water chemistry and the pesticide-membrane interactions is the key to achieving high pesticide removal efficiency. The integration of membrane technology and conventional removal technologies represents a new dimension and the future direction for the treatment of wastewater containing recalcitrant pesticides.
Collapse
Affiliation(s)
- P S Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| | - N A Ahmad
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - T W Wong
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - L T Yogarathinam
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - A F Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| |
Collapse
|
7
|
Shabani Z, Mohammadi T, Kasiri N, Sahebi S. Thin-Film Nanocomposite Forward Osmosis Membranes Prepared on PVC Substrates with Polydopamine Functionalized Zr-Based Metal Organic Frameworks. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zahra Shabani
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum, and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Computer Aided Process Engineering (CAPE) Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum, and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| | - Norollah Kasiri
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Computer Aided Process Engineering (CAPE) Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| | - Soleyman Sahebi
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum, and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| |
Collapse
|
8
|
Nikbakht Fini M, Montesantos N, Maschietti M, Muff J. Performance evaluation of membrane filtration for treatment of H2S scavenging wastewater from offshore oil and gas production. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Ball-milled biochar incorporated polydopamine thin-film composite (PDA/TFC) membrane for high-flux separation of tetracyclic antibiotics from wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118957] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Wang D, Zhang Y, Cai Z, You S, Sun Y, Dai Y, Wang R, Shao S, Zou J. Corn Stalk-Derived Carbon Quantum Dots with Abundant Amino Groups as a Selective-Layer Modifier for Enhancing Chlorine Resistance of Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22621-22634. [PMID: 33950689 DOI: 10.1021/acsami.1c04777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low permeability and chlorine resistance of normal thin-film composite (TFC) membranes restrict their practical applications in many fields. This study reports the preparation of a high chlorine-resistant TFC membrane for forward osmosis (FO) by incorporating corn stalk-derived N-doped carbon quantum dots (N-CQDs) into the selective polyamide (PA) layer to construct a polydopamine (PDA) sub-layer (PTFCCQD). Membrane modification is characterized by surface morphology, hydrophilicity, Zeta potential, and roughness. Results show that TFCCQD (without PDA pretreatment) and PTFCCQD membranes possess greater negative surface charges and thinner layer-thickness (less than 68 nm). With N-CQDs and PDA pretreatment, the surface roughness of the PTFCCQD membrane decreases significantly with the co-existence of microsized balls and flocs with a dense porous structure. With the variation of concentration and type of draw solution, the PTFCCQD membrane exhibits an excellent permeability with low J(reverse salt flux)/J(water flux) values (0.1-0.25) due to the enhancement of surface hydrophilicity and the shortening of permeable paths. With 16,000 ppm·h chlorination, reverse salt flux of the PTFCCQD membrane (8.4 g m-2 h-1) is far lower than those of TFCCQD (136.2 g m-2 h-1), PTFC (127.6 g m-2 h-1), and TFC (132 g m-2 h-1) membranes in FO processes. The decline of salt rejection of the PTFCCQD membrane is only 8.2%, and the normalized salt rejection maintains 0.918 in the RO system (16,000 ppm·h chlorination). Super salt rejection is ascribed to the existence of abundant N-H bonds (N-CQDs), which are preferentially chlorinated by free chlorine to reduce the corrosion of the PA layer. The structure of the PA layer is stable during chlorination also due to the existence of various active groups grafted on the surface. This study may pave a new direction for the preparation of durable biomass-derivative (N-CQD)-modified membranes to satisfy much more possible applications.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Ying Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Zhuang Cai
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yubo Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Ying Dai
- School of Civil Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Rongyue Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Siliang Shao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
11
|
Hu Y, Li Q, Guo Y, Zhu L, Zeng Z, Xiong Z. Nanofiltration‐like forward osmosis membranes on in‐situ mussel‐modified polyvinylidene fluoride porous substrate for efficient salt/dye separation. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yi‐Ning Hu
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo China
| | - Qiao‐Mei Li
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
| | - Yan‐Feng Guo
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
| | - Li‐Jing Zhu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo China
| | - Zhi‐Xiang Zeng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo China
| | - Zhu Xiong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering Guangzhou University Guangzhou Guangdong China
| |
Collapse
|
12
|
Bagheri AR, Aramesh N, Bilal M. New frontiers and prospects of metal-organic frameworks for removal, determination, and sensing of pesticides. ENVIRONMENTAL RESEARCH 2021; 194:110654. [PMID: 33359702 DOI: 10.1016/j.envres.2020.110654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Pesticides have been widely used in agriculture to control, reduce, and kill insects. Humans are also being using pesticides to control insidious animals in daily life. By these practices, a huge volume of pesticides is introduced to the environment. Despite broad-spectrum applicability, pesticides also have hazardous effects on both humans and animals at high and low concentrations. Long-term exposure to pesticides can cause different diseases, like leukemia, lymphoma, and cancers of the brain, breasts, prostate, testis, and ovaries. Reproductive disorders from pesticides include birth defects, stillbirth, spontaneous abortion, sterility, and infertility. Therefore, the application of determination and treatment methods for pre-concentration and removal of these toxic materials from the environment appears a vital concern. To date, different materials and approaches have been employed for these purposes. Among these approaches, multifunctional metal-organic frameworks (MOFs)-assisted adsorption and determination processes have always been in the spotlight. These facts are due to exclusive properties of MOFs in terms of the crystallinity, large surface area, high chemical, and physical stability, and controllable structure as well as unique features of adsorption and determination process in terms of simple, easy, cheap, available method and ability to use in large and industrial scales. In the present work, we illustrate the exceptional features of MOFs as well as the possible mechanism for the adsorption of pesticides by MOFs. The use of these fantastic materials for pre-concentration and removal of pesticides are extensively explored. In addition, the performance of MOFs was compared with other adsorbents. Finally, the new frontiers and prospects of MOFs for the determination, sensing, and removal of pesticides are presented.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|