1
|
Wang M, Huang T, Shan M, Sun M, Liu S, Tang H. Zwitterionic Tröger's Base Microfiltration Membrane Prepared via Vapor-Induced Phase Separation with Improved Demulsification and Antifouling Performance. Molecules 2024; 29:1001. [PMID: 38474513 DOI: 10.3390/molecules29051001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The fouling of separation membranes has consistently been a primary factor contributing to the decline in membrane performance. Enhancing the surface hydrophilicity of the membrane proves to be an effective strategy in mitigating membrane fouling in water treatment processes. Zwitterionic polymers (containing an equimolar number of homogeneously distributed anionic and cationic groups on the polymer chains) have been used extensively as one of the best antifouling materials for surface modification. The conventional application of zwitterionic compounds as surface modifiers is intricate and inefficient, adding complexity and length to the membrane preparation process, particularly on an industrial scale. To overcome these limitations, zwitterionic polymer, directly used as a main material, is an effective method. In this work, a novel zwitterionic polymer (TB)-zwitterionic Tröger's base (ZTB)-was synthesized by quaternizing Tröger's base (TB) with 1,3-propane sultone. The obtained ZTB is blended with TB to fabricate microfiltration (MF) membranes via the vapor-induced phase separation (VIPS) process, offering a strategic solution for separating emulsified oily wastewater. Atomic force microscopy (AFM), scanning electron microscopy (SEM), water contact angle, and zeta potential measurements were employed to characterize the surface of ZTB/TB blended membranes, assessing surface morphology, charge, and hydrophilic/hydrophobic properties. The impact of varying ZTB levels on membrane surface morphology, hydrophilicity, water flux, and rejection were investigated. The results showed that an increase in ZTB content improved hydrophilicity and surface roughness, consequently enhancing water permeability. Due to the attraction of water vapor, the enrichment of zwitterionic segments was enriched, and a stable hydration layer was formed on the membrane surface. The hydration layer formed by zwitterions endowed the membrane with good antifouling properties. The proposed mechanism elucidates the membrane's proficiency in demulsification and the reduction in irreversible fouling through the synergistic regulation of surface charge and hydrophilicity, facilitated by electrostatic repulsion and the formation of a hydration layer. The ZTB/TB blended membranes demonstrated superior efficiency in oil-water separation, achieving a maximum flux of 1897.63 LMH bar-1 and an oil rejection rate as high as 99% in the oil-water emulsion separation process. This study reveals the migration behavior of the zwitterionic polymer in the membrane during the VIPS process. It enhances our comprehension of the antifouling mechanism of zwitterionic membranes and provides guidance for designing novel materials for antifouling membranes.
Collapse
Affiliation(s)
- Meng Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tingting Huang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Meng Shan
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Mei Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Shasha Liu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Hai Tang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
2
|
Maggay IV, Liao TY, Venault A, Lin HT, Chao CC, Wei TC, Chang Y. Leveraging the Dielectric Barrier Discharge Plasma Process to Create Regenerative Biocidal ePTFE Membranes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48001-48014. [PMID: 37787514 DOI: 10.1021/acsami.3c10800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The utilization of dielectric barrier discharge (DBD) plasma treatment for modifying substrate surfaces constitutes an easy and simple approach with a potential for diverse applications. This technique was used to modify the surface of a commercial porous expanded poly(tetrafluoroethylene) (ePTFE) film with either dimethylaminoethyl methacrylate (DMAEMA) or (trimethylamino)ethyl methacrylate chloride (TMAEMA) monomers, aiming to obtain antibacterial ePTFE. Physicochemical analyses of the membranes revealed that DBD successfully enhanced the surface energy and surface charge of the membranes while maintaining high porosity (>75%) and large pore size (>1.0 μm). Evaluation of the bacteria killing-releasing (K-R) function revealed that both DMAEMA and TMAEMA endowed ePTFE with the ability to kill Escherichia coli bacteria. However, only TMAEMA-grafted ePTFE allowed for the release of dead bacteria from the surface upon washing with sodium hexametaphosphate (SHMP) saline solution, owing to its cationic charge derived from the quaternary amine. Washing with SHMP disturbed the electrostatic force between the polymer brushes and dead bacteria, which caused the release of the dead bacteria. Lastly, dead-end bacteria filtration showed that the TMAEMA-grafted ePTFE was able to kill 99.78% of the bacteria, while approximately 61.55% of bacteria were killed upon contact. The present findings support the feasibility of using DBD plasma treatment for designing surfaces that target bacteria and aid in the containment of disease-causing pathogens.
Collapse
Affiliation(s)
- Irish Valerie Maggay
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan, R.O.C
| | - Ting-Yu Liao
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan, R.O.C
| | - Antoine Venault
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan, R.O.C
| | - Hao-Tung Lin
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan, R.O.C
| | - Chih-Cheng Chao
- Tasheh Biotec Co., LTD, 226, Yuan-Pei Street, Hsinchu City 300, Taiwan, R.O.C
| | - Ta-Chin Wei
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan, R.O.C
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan, R.O.C
| |
Collapse
|
3
|
Chiao YH, Lin HT, Ang MBMY, Teow YH, Wickramasinghe SR, Chang Y. Surface Zwitterionization via Grafting of Epoxylated Sulfobetaine Copolymers onto PVDF Membranes for Improved Permeability and Biofouling Mitigation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yu-Hsuan Chiao
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li32023, Taiwan
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas72701, United States
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodaicho 1-1, Nada, Kobe657-8501, Japan
| | - Hao-Tung Lin
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li32023, Taiwan
| | - Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li32023, Taiwan
| | - Yeit Hann Teow
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600Selangor Darul Ehsan, Malaysia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600Selangor Darul Ehsan, Malaysia
| | - S. Ranil Wickramasinghe
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas72701, United States
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600Selangor Darul Ehsan, Malaysia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600Selangor Darul Ehsan, Malaysia
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li32023, Taiwan
| |
Collapse
|
4
|
Alias NH, Aziz MHA, Adam MR, Aizudin M, Ang EH. Polymeric/ceramic membranes for water reuse. RESOURCE RECOVERY IN DRINKING WATER TREATMENT 2023:65-92. [DOI: 10.1016/b978-0-323-99344-9.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
5
|
Chiu CY, Lin HT, Yen TJ, Chang Y. Self-Assembly Anchored Cationic Copolymer Interfaces for Applying the Control of Counterion-Induced Bacteria Killing/Release Procedure. Macromol Biosci 2022; 22:e2200207. [PMID: 35875978 DOI: 10.1002/mabi.202200207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Indexed: 12/25/2022]
Abstract
In recent years, daily hygiene and disease control issues have received increasing attention, especially the raging epidemics caused by the spread of deadly viruses. The construction of the interface of new polymer materials is focused on, which can provide a cyclic operation process for the killing and releasing of bacteria, and perform repeated regeneration, which is of great significance for the development of advanced medical biomaterials. In order to explore the basic physical phenomena of bacterial attachment and detachment on the polymer material interface by different amine groups, this study plans to synthesize four different butyl methacrylate (BMA)-based cationic copolymers with primary, ternary, and quaternary amine groups, and compare their effects on bactericidal efficiency. Since BMA can generate strong hydrophobic interactions with the benzene ring structure, this study used a polystyrene substrate to realize a self-assembled cationic copolymer interface for controlling the counterion-induced bacterial killing/release process. Furthermore, negatively charged ions are introduced to induce changes in the hydration capability of water molecules and control the subsequent bacterial detachment function. In this study, possible directions to answer and clarify the above concepts are proposed, and there is a basic reference principle that can lead to research work in macromolecular bioscience fields.
Collapse
Affiliation(s)
- Chieh-Yang Chiu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu City, 300044, Taiwan (R.O.C.)
| | - Hao-Tung Lin
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Zhongli Dist., Taoyuan City, 320314, Taiwan (R.O.C.)
| | - Ta-Jen Yen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu City, 300044, Taiwan (R.O.C.)
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Zhongli Dist., Taoyuan City, 320314, Taiwan (R.O.C.)
| |
Collapse
|
6
|
Sassi W, Mrad M, Behera D, Ammar S, Hihn JY. Prediction and optimization of electroplated Ni-based coating composition and thickness using central composite design and artificial neural network. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01602-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Hu D, Wu H, Li Y. Positively charged ultrafiltration membranes fabricated via graft polymerization combined with crosslinking and branching for textile wastewater treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Sassi W, Boubaker H, Ben-Khaled H, Dhaoui S, Ghorbal A, Hihn JY. Modelization and implementation of free adsorption and electrosorption of Cr (VI) from wastewater using Al 2O 3 nanoparticles: assessment and comparison of the two processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28349-28366. [PMID: 33538973 DOI: 10.1007/s11356-021-12612-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to apply the technique of electrosorption in order to assess the capacity of heterogeneous adsorption under an electric field. This was to enhance the adsorption capacity of the nanoparticles, to shorten the adsorption time, and to reduce the cost of the purification of contaminated waters. A final objective of this study was to compare the free adsorption (FA) and the electrosorption (ES) to understand the interface adsorbent/adsorbate at different contact conditions. For these purposes, a potentially efficient, environment-friendly absorbent was synthesized for dechromation purposes. The experimental design method generated optimum conditions as tc = 123 min, T = 318°K, and C0 = 100 mg/L. Freundlich's well-fitted modeling proved that the adsorption of chromate (VI) on nano-Al2O3 occurred on a homogenous surface. In addition, the adsorption coefficient intensity n did not only confirm monolayer adsorption but also indicated a favorable adsorption process. Thermodynamic studies confirmed the reaction spontaneity and the physisorption of the process. The electrosorption process was also tested using 20mA/cm2 as applied current density. Free-adsorption (FA) and electrosorption (ES) processes were compared. The maximum recorded yield was 99% for (EA) against 87% for (FA). EDS analysis recorded 11.3% of chromate adsorbate with free adsorption. The amount of Cr (VI) on nano-Al2O3 was 42.5 %. Nevertheless, the Al2O3 nanoparticles lost their crystallinity and exploded after the ES process. Mechanisms of both (FA) and (ES) were proposed.
Collapse
Affiliation(s)
- Wafa Sassi
- Higher Institute of Applied Sciences and Technology of Gabes, Gabes University, Avenue Omar Ibn El Khattab, 6029, Gabes, Tunisia.
- Unité de Recherche Electrochimie, Matériaux et Environnement UREME (UR17ES45), Faculté des Sciences de Gabès, Université de Gabès, Cité Erriadh, 6072, Gabès, Tunisia.
| | - Hana Boubaker
- Research Laboratory LR18ES33, National Engineering School of Gabes, University of Gabes, Avenue Omar Ibn El Khattab, 6029, Gabès, Tunisia
| | - Hayet Ben-Khaled
- Higher Institute of Applied Sciences and Technology of Gabes, Gabes University, Avenue Omar Ibn El Khattab, 6029, Gabes, Tunisia
| | - Sana Dhaoui
- Higher Institute of Applied Sciences and Technology of Gabes, Gabes University, Avenue Omar Ibn El Khattab, 6029, Gabes, Tunisia
| | - Achraf Ghorbal
- Higher Institute of Applied Sciences and Technology of Gabes, Gabes University, Avenue Omar Ibn El Khattab, 6029, Gabes, Tunisia
- Research Laboratory LR18ES33, National Engineering School of Gabes, University of Gabes, Avenue Omar Ibn El Khattab, 6029, Gabès, Tunisia
| | - Jean-Yves Hihn
- Institut UTINAM, CNRS UMR 6213, Univ Bourgogne Franche-Comté, 16 route de Gray, 25030, Besançon Cedex, France
| |
Collapse
|