1
|
Abd El-Monaem EM, Omer AM, Hamad HA, Eltaweil AS. Construction of attapulgite decorated cetylpyridinium bromide/cellulose acetate composite beads for removal of Cr (VI) ions with emphasis on mechanistic insights. Sci Rep 2024; 14:12164. [PMID: 38806605 PMCID: PMC11133475 DOI: 10.1038/s41598-024-62378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
Eco-friendly and renewable composite beads were constructed for efficient adsorptive removal of Cr (VI) ions. Attapulgite (ATP) clay decorated with cetylpyridinium bromide (CPBr) was impregnated into cellulose acetate (CA) beads, which were formulated through a simple and cost-effective solvent-exchange approach. FTIR, XRD, SEM, Zeta potential, and XPS characterization tools verified the successful formation of ATP-CPBr@CA beads. The composite beads displayed a spherical and porous shape with a positively charged surface (26.6 mV) at pH 2. In addition, higher adsorption performance was accomplished by ATP-CPBr@CA composite beads with ease of separation compared to their components. Meanwhile, equilibrium isotherms pointed out that the Langmuir model was optimal for describing the adsorption process of Cr (VI) with a maximal adsorption capacity of 302 mg/g. Moreover, the D-R isotherm model verified the physical adsorption process, while adsorption data obeyed the pseudo-second-order kinetic model. Further, XPS results hypothesized that the removal mechanism involves adsorption via electrostatic interactions, redox reaction, and co-precipitation. Interestingly, the ATP-CPBr@CA composite beads reserved tolerable adsorption characteristics with a maximum removal present exceeding 70% after reuse for seven successive cycles, proposing its feasible applicability as a reusable and easy-separable candidate for removing heavy metals from aquatic bodies.
Collapse
Affiliation(s)
- Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M Omer
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Hesham A Hamad
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Abdelazeem S Eltaweil
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences, Ibra, 400, Sultanate of Oman.
| |
Collapse
|
2
|
Ma B, Ulbricht M, Hu C, Fan H, Wang X, Pan YR, Hosseini SS, Panglisch S, Van der Bruggen B, Wang Z. Membrane Life Cycle Management: An Exciting Opportunity for Advancing the Sustainability Features of Membrane Separations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3013-3020. [PMID: 36786864 DOI: 10.1021/acs.est.2c09257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Membrane science and technology is growing rapidly worldwide and continues to play an increasingly important role in diverse fields by offering high separation efficiency with low energy consumption. Membranes have also shown great promise for "green" separation. A majority of the investigations in the field are devoted to the membrane fabrication and modification with the ultimate goals of enhancing the properties and separation performance of membranes. However, less attention has been paid to membrane life cycle management, particularly at the end of service. This is becoming very important, especially taking into account the trends toward sustainable development and carbon neutrality. On the contrary, this can be a great opportunity considering the large variety of membrane processes, especially in terms of the size and capacity of plants in operation. This work aims to highlight the prominent aspects that govern membrane life cycle management with special attention to life cycle assessment (LCA). While fabrication, application, and recycling are the three key aspects of LCA, we focus here on membrane (module) recycling at the end of life by elucidating the relevant aspects, potential criteria, and strategies that effectively contribute to the achievement of green development and sustainability goals.
Collapse
Affiliation(s)
- Baiwen Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongwei Fan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yi-Rong Pan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Seyed Saeid Hosseini
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Stefan Panglisch
- Chair for Mechanical Process Engineering/Water Technology, University of Duisburg-Essen, Duisburg 47057, Germany
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
3
|
Omer AM, Abd El-Monaem EM, Eltaweil AS. Novel reusable amine-functionalized cellulose acetate beads impregnated aminated graphene oxide for adsorptive removal of hexavalent chromium ions. Int J Biol Macromol 2022; 208:925-934. [PMID: 35364200 DOI: 10.1016/j.ijbiomac.2022.03.187] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/12/2022]
Abstract
In this study, a multi-featured adsorbent was developed for the adsorptive removal of hexavalent chromium (Cr6+) ions. Herein, aminated graphene oxide (GO-NH2) was firstly synthetized and incorporated into cellulose acetate beads (CA) which were followed by surface amine-functionalization process. Varies characterization tools such as FT-IR spectroscopy, SEM, TGA, XRD, BET, XPS and zeta potential were employed to ensure the successful fabrication of GO-NH2@CA-NH2 composite beads. An enhancement in the adsorption performance was attained, while the adsorption equilibrium was closely gotten within only 60 min. Therefore, the adsorption capacity was boosted with increasing GO-NH2 ratio in the beads matrix from 10 to 25%. Furthermore, the adsorption process agreed with Freundlich isotherm model with a supreme adsorption capacity of 410.21 mg/g at pH 2, while data followed the pseudo-second-order kinetic model. Besides, thermodynamic studies denoted that the adsorption process was endothermic, randomness and spontaneous. The composite beads retained better adsorption characteristics for seven sequential cycles with ease of separation. The proposed adsorption of Cr6+ onto GO-NH2@CA-NH2 surface occurred via the electrostatic interactions, reduction process and coordinate-covalent bonds. These findings hypothesize that the fabricated GO-NH2@CA-NH2 beads could be act as easy-separable and reusable adsorbent for efficient adsorption of Cr6+ ions.
Collapse
Affiliation(s)
- Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt.
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | | |
Collapse
|
4
|
Tomietto P, Russo F, Galiano F, Loulergue P, Salerno S, Paugam L, Audic JL, De Bartolo L, Figoli A. Sustainable fabrication and pervaporation application of bio-based membranes: Combining a polyhydroxyalkanoate (PHA) as biopolymer and Cyrene™ as green solvent. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Razman KK, Hanafiah MM, Mohammad AW, Lun AW. Life Cycle Assessment of an Integrated Membrane Treatment System of Anaerobic-Treated Palm Oil Mill Effluent (POME). MEMBRANES 2022; 12:membranes12020246. [PMID: 35207167 PMCID: PMC8877097 DOI: 10.3390/membranes12020246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 01/22/2023]
Abstract
A life cycle assessment of anaerobic-treated palm oil mill effluent (POME) was conducted to assess the environmental performance on two integrated treatment processes: the typical hollow fiber membrane ultrafiltration module coupled with adsorption and electro-oxidation as pretreatment. The analysis was undertaken using the ReCiPe 2016 method and SimaPro v9 software was employed using a ‘cradle-to-gate’ approach. The results showed that hollow fiber membrane from the adsorption integrated membrane impacted significantly at 42% to 99% across all impact categories for both processes. Overall, the electro-oxidation integrated membrane was discovered to have a lesser environmental impact, particularly on the ozone formation (human health) (HOFP) at 0.38 kg NOx-eq in comparison to the adsorption integrated membrane at 0.66 kg NOx-eq. The total characterization factor of the endpoint category for human health is 8.61 × 10−4 DALY (adsorption integrated membrane) and 8.45 × 10−4 DALY (electro-oxidation integrated membrane). As membrane treatment is closely linked to energy consumption, the environmental impact with different sources of energy was evaluated for both processes with the impacts decreasing in the following order: Grid > Biogas > Grid/Solar. Future research should concentrate on determining the overall ‘cradle-to-grave’ environmental impact of treating POME, as well as other scenarios involving membrane treatment energy utilization using LCA. This study can help decision-makers in identifying an environmentally sustainable POME treatment and management, especially in Malaysia.
Collapse
Affiliation(s)
- Khalisah Khairina Razman
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia;
| | - Marlia M. Hanafiah
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia;
- Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Correspondence:
| | - Abdul Wahab Mohammad
- Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia; (A.W.M.); (A.W.L.)
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Ang Wei Lun
- Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia; (A.W.M.); (A.W.L.)
| |
Collapse
|
6
|
Yadav P, Ismail N, Essalhi M, Tysklind M, Athanassiadis D, Tavajohi N. Assessment of the environmental impact of polymeric membrane production. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118987] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Romay M, Diban N, Urtiaga A. Thermodynamic Modeling and Validation of the Temperature Influence in Ternary Phase Polymer Systems. Polymers (Basel) 2021; 13:polym13050678. [PMID: 33668209 PMCID: PMC7956791 DOI: 10.3390/polym13050678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 11/16/2022] Open
Abstract
The effect of the temperature, as a process variable in the fabrication of polymeric membranes by the non-solvent induced phase separation (NIPS) technique, has been scarcely studied. In the present work, we studied the influence of temperature, working at 293, 313 and 333 K, on the experimental binodal curves of four ternary systems composed of PVDF and PES as the polymers, DMAc and NMP as the solvents and water as the non-solvent. The increase of the temperature caused an increase on the solubility gap of the ternary system, as expected. The shift of the binodal curve with the temperature was more evident in PVDF systems than in PES systems indicating the influence of the rubbery or glassy state of the polymer on the thermodynamics of phase separation. As a novelty, the present work has introduced the temperature influence on the Flory-Huggins model to fit the experimental cloud points. Binary interaction parameters were calculated as a function of the temperature: (i) non-solvent/solvent (g12) expressions with UNIFAC-Dortmund methodology and (ii) non-solvent/polymer (χ13) and solvent/polymer (χ23) using Hansen solubility parameters. Additionally, the effect of the ternary interaction term was not negligible in the model. Estimated ternary interaction parameters (χ123) presented a linear relation with temperature and negative values, indicating that the solubility of the polymers in mixtures of solvent/non-solvent was higher than expected for single binary interaction. Finally, PES ternary systems exhibited higher influence of the ternary interaction parameter than PVDF systems.
Collapse
|