1
|
Dong R, Kim NK, Yi Z, Osuji CO. Self-assembled nanostructured membranes with tunable pore size and shape from plant-derived materials. NANOSCALE 2024; 16:20714-20724. [PMID: 39434696 DOI: 10.1039/d4nr02291b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Nanostructured materials derived from sustainable sources are of interest as viable alternatives to traditional petroleum-derived sources in membrane applications due to environmental concerns. Here, we present the development of pore size-tunable nanostructured polymer membranes based on a plant-derived material. The membranes were fabricated using a tri-functional amine as the templating core species and a cross-linkable ligand synthesized from rose oil-derived citronellol. The self-assembly of a supramolecular complex between the template core and the ligand forms a hexagonally packed columnar (Colh) mesophase, the dimensions of which can be precisely controlled by changing the stoichiometric ratio between these constituents. Within the hexagonal mesophase stoichiometric range, the pore size of the nanostructured membranes can be tuned from 1.0 to 1.3 nm, with a step size of approximately 0.1 nm. The membranes exhibited a clear distinction in molecular size selectivity, as demonstrated by dye adsorption experiments. The membrane fabricated with a ligand-to-core ratio of 3 to 1 demonstrated shape-based selectivity, exhibiting a higher permeability for propeller-shaped penetrants and highlighting its potential for shape-selective transport. We anticipate that this straightforward approach, using plant-derived materials, can contribute to important sustainability aspects while enhancing the performance of current state-of-the-art nanostructured membranes by enabling precise control over pore size.
Collapse
Affiliation(s)
- Ruiqi Dong
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Na Kyung Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Zhuan Yi
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Chinedum O Osuji
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Takegawa S, Hamaguchi K, Hosono E, Sato S, Watanabe G, Uchida J, Kato T. Lithium-ion batteries with fluorinated mesogen-based liquid-crystalline electrolytes: molecular design towards enhancing oxidation stability. NANOSCALE 2024. [PMID: 39466412 DOI: 10.1039/d4nr03559c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Two-dimensional (2D) nanostructured liquid crystals containing fluorinated cyclohexylphenyl and cyclic carbonate moieties have been developed as quasi-solid-state self-organized electrolytes for safe lithium-ion batteries. We have designed lithium ion-conductive liquid-crystalline (LC) materials with fluorine substituents on mesogens for improved oxidation stability. Computational studies suggest that the fluorination of mesogens lowers the highest occupied molecular orbital (HOMO) level of LC molecules and improves their oxidation resistance as electrolytes. The LC molecule complexed with lithium bis(trifluoromethanesulfonyl)imide exhibits smectic A LC phases with 2D ion transport pathways over wide temperature ranges. Cyclic voltammetry measurements of the fluorinated mesogen-based LC electrolytes indicate that they are electrochemically stable above 4.0 V vs. Li/Li+. Lithium half-cells composed of fluorinated LC electrolytes show higher discharge capacity and coulombic efficiency than those containing non-fluorinated analogous LC molecules. Combining molecular dynamics simulations with the experimental results, it is revealed that the fluorination of the mesogen effectively enhances the electrochemical stability of the LC electrolytes without significantly disrupting ionic conductivities and the LC order.
Collapse
Affiliation(s)
- Shingo Takegawa
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kazuma Hamaguchi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Eiji Hosono
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Shunsuke Sato
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Go Watanabe
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
- Department of Data Science, School of Frontier Engineering, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa 242-0435, Japan
| | - Junya Uchida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Institute for Aqua Regeneration, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
3
|
Abeysekera I, Bosire R, Masese FK, Ndaya D, Kasi RM. Ionic nanoporous membranes from self-assembled liquid crystalline brush-like imidazolium triblock copolymers. SOFT MATTER 2024; 20:6834-6847. [PMID: 39150444 DOI: 10.1039/d4sm00449c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
There is a need to generate mechanically and thermally robust ionic nanoporous membranes for separation and fuel cell applications. Herein, we report a general approach to the preparation of ionic nanoporous membranes through custom synthesis, self-assembly, and subsequent chemical manipulations of ionic brush block copolymers. We synthesized polynorbornene-based triblock copolymers containing imidazolium cations balanced by counter anions in the central block, side-chain liquid crystalline units, and sidechain polylactide end blocks. This unique platform comprises: (1) imidazolium/bis(trifluoromethanesulfonyl)imide (TFSI) as the middle block, which has an excellent ion-exchange ability, (2) cyanobiphenyl liquid crystalline end block, a sterically hindered hydrophobic segment, which is chemically stable and immune to hydroxide attack, (3) polylactide brush-like units on the other end block that is easily etched under mild alkaline conditions and (4) a polynorbornene backbone, a lightly crosslinked system that offers mechanical robustness. These membranes retain their morphology before and after backbone crosslinking as well as etching of polylactide sidechains. The ion exchange performance and dimensional stability of these membranes were investigated by water uptake capability and swelling ratio. Moreover, the length of the carbon spacer in the imidazolium/TFSI central block moiety endowed the membrane with improved ionic conductivity. The ionic nanoporous materials are unusual due to their singular thermal, mechanical, alkaline stability and ion transport properties. Applications of these materials include electrochemical actuators, solid-state ionic nanochannel biosensors, and ion-conducting membranes.
Collapse
Affiliation(s)
- Iyomali Abeysekera
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Reuben Bosire
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Francis K Masese
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Dennis Ndaya
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
- Polymer Program, Institute of Material Science, University of Connecticut, Storrs, CT 06269, USA
| | - Rajeswari M Kasi
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
- Polymer Program, Institute of Material Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
4
|
Guardià J, Reina JA, Giamberini M, Montané X. An Up-to-Date Overview of Liquid Crystals and Liquid Crystal Polymers for Different Applications: A Review. Polymers (Basel) 2024; 16:2293. [PMID: 39204513 PMCID: PMC11359798 DOI: 10.3390/polym16162293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Liquid crystals have been extensively used in various applications, such as optoelectronic devices, biomedical applications, sensors and biosensors, and packaging, among others. Liquid crystal polymers are one type of liquid crystal material, combining their intrinsic properties with polymeric flexibility for advanced applications in displays and smart materials. For instance, liquid crystal polymers can serve as drug nanocarriers, forming cubic or hexagonal mesophases, which can be tailored for controlled drug release. Further applications of liquid crystals and liquid crystal polymers include the preparation of membranes for separation processes, such as wastewater treatment. Furthermore, these materials can be used as ion-conducting membranes for fuel cells or lithium batteries due to their broad types of mesophases. This review aims to provide an overall explanation and classification of liquid crystals and liquid crystal polymers. Furthermore, the great potential of these materials relies on their broad range of applications, which are determined by their unique properties. Moreover, this study provides the latest advances in liquid crystal polymer-based membranes and their applications, focusing especially on fuel cells. Moreover, future directions in the applications of various liquid crystals are highlighted.
Collapse
Affiliation(s)
- Jordi Guardià
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain; (J.G.); (J.A.R.)
| | - José Antonio Reina
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain; (J.G.); (J.A.R.)
| | - Marta Giamberini
- Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain;
| | - Xavier Montané
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain; (J.G.); (J.A.R.)
| |
Collapse
|
5
|
Mehlhose S, Sakamoto T, Eickhoff M, Kato T, Tanaka M. Electrochemical Detection of Selective Anion Transport through Subnanopores in Liquid-Crystalline Water Treatment Membranes. J Phys Chem B 2024; 128:4537-4543. [PMID: 38683761 PMCID: PMC11089498 DOI: 10.1021/acs.jpcb.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 05/02/2024]
Abstract
The anion-selective transport through subnanoporous liquid-crystalline (LC) water treatment membranes was quantitatively detected by the deposition and electrochemical analysis of the LC membrane on the GaN electrode. The time course of the capacitance and Warburg resistance of the LC membrane suggest that the interaction of the LC membrane with monovalent Cl- ions is distinctly different from that with SO42- ions. A continuous decay in capacitance suggests the condensation of Cl- ions in subnanopores, whereas the interaction between SO42- ions and the inner wall of subnanopores is much weaker. The chronoamperometry data further suggest that SO42- ions are transported through subnanoporous channels 10 times faster than Cl- ions. These results, together with the previous X-ray emission spectroscopy, suggest that SO42- ions, which possess similar hydrogen-bonded structures to the hydrogen-bonded networks inside the subnanopores, can exchange the associated water molecules and hop along the network of water molecules, but Cl- ions bind and accumulate inside subnanopores. The well-controlled supramolecular self-assembly of LC building blocks opens a large potential toward the fine adjustment of hydrogen-bonding networks in nanospace providing materials new functions, which cannot be realized by bulk water.
Collapse
Affiliation(s)
- Sven Mehlhose
- Physical
Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, D69120 Heidelberg, Germany
| | - Takeshi Sakamoto
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Martin Eickhoff
- Institut
für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee NW1, D28359 Bremen, Germany
| | - Takashi Kato
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Research
Initiative for Supra-Materials, Shinshu
University, Wakasato, Nagano 380-8553, Japan
| | - Motomu Tanaka
- Physical
Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, D69120 Heidelberg, Germany
- Center
for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
Afrizal, Yusmaniar, Valentino B, Riswoko A, Khairunnisa Gumilar K. Effect of methyl methacrylate concentrations on surface and thermal analysis of composite polymer polymethylmethacrylates with mesogen reactive RM82. Des Monomers Polym 2024; 27:1-11. [PMID: 38586248 PMCID: PMC10997352 DOI: 10.1080/15685551.2024.2336657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
This research report of the synthesis of composite polymers from liquid crystal mesogen reactive (RM82) monomers with Methyl methacrylate (MMA). The purpose of this research is analysis the effect concentration of MMA on the surface and thermal of the composite polymer PMMA-RM82. The result of the morphological analysis of composite surfaces performed by polarization optical microscopy (POM) technique showed liquid crystal textures affected composition from two monomers. SEM images show that the surface of the RM82 liquid crystal has a shape resembling fibrous and blade-like crystals with a length of up to 10 μm (micrometers). Analysis thermal showed the heat released by the PMMA-RM82 increased with the increase in MMA weight percent. This affects the rapid crystallization process of PMMA-RM82 which of concentration MMA 30%-RM82 the heat released is almost twice as much as the heat released by MMA 5%-RM82. The absence of PMMA and RM82 peaks both endothermic and exothermic in PMMA-RM82 samples indicates that polymerization has occurred and a new product has formed. Analysis structure molecule by FTIR found that the IR spectral form of each variation in the weight percent of MMA was almost the same, but there was a spectral shift that showed that polymerization had occurred in PMMA-RM82 which was characterized by a reaction to the free radical C=C bond released by the photoinitiator. XRD pattern of composite PMMA-RM82 showed the peaks formed are located at scattering angles similar to RM82 but there is a decrease in intensity as the percent weight of MMA increases.
Collapse
Affiliation(s)
- Afrizal
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jakarta, Indonesia
| | - Yusmaniar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jakarta, Indonesia
| | - Bryan Valentino
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jakarta, Indonesia
| | - Asep Riswoko
- National Research and Innovation Agency, KST Habibie, South Tangerang, Indonesia
| | - Karin Khairunnisa Gumilar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jakarta, Indonesia
| |
Collapse
|
7
|
Kato T, Uchida J, Ishii Y, Watanabe G. Aquatic Functional Liquid Crystals: Design, Functionalization, and Molecular Simulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306529. [PMID: 38126650 PMCID: PMC10885670 DOI: 10.1002/advs.202306529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Aquatic functional liquid crystals, which are ordered molecular assemblies that work in water environment, are described in this review. Aquatic functional liquid crystals are liquid-crystalline (LC) materials interacting water molecules or aquatic environment. They include aquatic lyotropic liquid crystals and LC based materials that have aquatic interfaces, for example, nanoporous water treatment membranes that are solids preserving LC order. They can remove ions and viruses with nano- and subnano-porous structures. Columnar, smectic, bicontinuous LC structures are used for fabrication of these 1D, 2D, 3D materials. Design and functionalization of aquatic LC sensors based on aqueous/LC interfaces are also described. The ordering transitions of liquid crystals induced by molecular recognition at the aqueous interfaces provide distinct optical responses. Molecular orientation and dynamic behavior of these aquatic functional LC materials are studied by molecular dynamics simulations. The molecular interactions of LC materials and water are key of these investigations. New insights into aquatic functional LC materials contribute to the fields of environment, healthcare, and biotechnology.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Initiative for Supra-Materials, Shinshu University, Nagano, 380-8553, Japan
| | - Junya Uchida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshiki Ishii
- Department of Data Science, School of Frontier Engineering, Kitasato University, Sagamihara, 252-0373, Japan
| | - Go Watanabe
- Department of Data Science, School of Frontier Engineering, Kitasato University, Sagamihara, 252-0373, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), Ebina, 243-0435, Japan
| |
Collapse
|
8
|
Hamaguchi K, Sakamoto T, Kurahashi N, Harada Y, Kato T. Hydrogen-Bonded Structures of Water Molecules in Hydroxy-Functionalized Nanochannels of Columnar Liquid Crystalline Nanostructured Membranes Studied by Soft X-ray Emission Spectroscopy. J Phys Chem Lett 2024; 15:454-460. [PMID: 38189793 PMCID: PMC10801685 DOI: 10.1021/acs.jpclett.3c03027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Here, we report a synchrotron-based high-resolution soft X-ray emission spectroscopy study on hydrogen-bonded structures of water molecules in the self-organized, hydroxy-group-functionalized one-dimensional nanochannels of liquid crystalline nanostructured membranes. The water molecules confined in the uncharged hydroxy-functionalized nanochannels (which have a diameter of about 1.5 nm) exhibit hydrogen-bonded structures close to those of bulk liquid water, even directly interacting with diol groups. These hydrogen-bonded structures contrast with the more distorted hydrogen bonding of water molecules confined in self-organized channels with a diameter of 0.6 nm formed by an analogous nanostructured membrane with a cationic moiety, which was explained by the ability of the channel functional groups to donate and accept hydrogen bonds in a confined space and the nanochannel diameter.
Collapse
Affiliation(s)
- Kazuma Hamaguchi
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takeshi Sakamoto
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoya Kurahashi
- Institute
for Solid State Physics (ISSP), The University
of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Yoshihisa Harada
- Institute
for Solid State Physics (ISSP), The University
of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
- Synchrotron
Radiation Collaborative Research Organization, The University of Tokyo, 468-1 Aoba, Aramaki, Aoba-ku, Sendai-shi, Miyagi 980-8572, Japan
| | - Takashi Kato
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research
Initiative for Supra-Materials Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
9
|
Xing W, Wang Y, Mao X, Gao Z, Yan X, Yuan Y, Huang L, Tang J. Improvement strategies for oil/water separation based on electrospun SiO 2 nanofibers. J Colloid Interface Sci 2024; 653:1600-1619. [PMID: 37812837 DOI: 10.1016/j.jcis.2023.09.196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
Oil spills and oily effluents from industry and daily life pose a great threat to all organisms in the ecosystem, while aggravating the problem of water scarcity, which has developed into a global challenge. Therefore, the development of advanced materials and technologies for oil/water separation has become a focus of attention. One-dimensional (1D) SiO2 nanofibers (SNFs) have become one of the most widely used inorganic nanomaterials in the past due to their stable chemical properties, excellent biocompatibility, and high temperature resistance etc. Meanwhile, electrospinning technique, as an emerging technology for treating oil/water emulsions, electrospun SNFs on this basis also has a number of advantages such as adjustable wettability, diverse structure and good connectivity. This review provides a systematic overview of the research progress of electrospun SNFs in different aspects. In this review, we first introduce the basic principles of electrospun SNFs, then focus on the design structures of various SNFs, propose corresponding strategies for the property improvement of SNFs, also analyze and consider the applications of SNFs. Finally, the challenges faced by electrospun SNFs in the field of oil/water separation are analyzed, and the future directions of electrospun SNFs are summarized and prospected.
Collapse
Affiliation(s)
- Wei Xing
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanxin Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Xinhui Mao
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhiyuan Gao
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xianhang Yan
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanru Yuan
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Linjun Huang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
10
|
Ratnasari A. Modified polymer membranes for the removal of pharmaceutical active compounds in wastewater and its mechanism-A review. Bioengineered 2023; 14:2252234. [PMID: 37712708 PMCID: PMC10506444 DOI: 10.1080/21655979.2023.2252234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 09/16/2023] Open
Abstract
Membrane technology can play a suitable role in removing pharmaceutical active compounds since it requires low energy and simple operation. Even though membrane technology has progressed for wastewater applications nowadays, modifying membranes to achieve the strong desired membrane performance is still needed. Thus, this study overviews a comprehensive insight into the application of modified polymer membranes to remove pharmaceutical active compounds from wastewater. Biotoxicity of pharmaceutical active compounds is first prescribed to gain deep insight into how membranes can remove pharmaceutical active compounds from wastewater. Then, the behavior of the diffusion mechanism can be concisely determined using mass transfer factor model that represented by β and B with value up to 2.004 g h mg-1 and 1.833 mg g-1 for organic compounds including pharmaceutical active compounds. The model refers to the adsorption of solute to attach onto acceptor sites of the membrane surface, external mass transport of solute materials from the bulk liquid to the membrane surface, and internal mass transfer to diffuse a solute toward acceptor sites of the membrane surface with evidenced up to 0.999. Different pharmaceutical compounds have different solubility and relates to the membrane hydrophilicity properties and mechanisms. Ultimately, challenges and future recommendations have been presented to view the future need to enhance membrane performance regarding fouling mitigation and recovering compounds. Afterwards, the discussion of this study is projected to play a critical role in advance of better-quality membrane technologies for removing pharmaceutical active compounds from wastewater in an eco-friendly strategy and without damaging the ecosystem.
Collapse
Affiliation(s)
- Anisa Ratnasari
- Department of Environmental Engineering, Faculty of Civil Planning and Geo Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, East Java, Indonesia
| |
Collapse
|
11
|
Kazi OA, Chen W, Eatman JG, Gao F, Liu Y, Wang Y, Xia Z, Darling SB. Material Design Strategies for Recovery of Critical Resources from Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300913. [PMID: 37000538 DOI: 10.1002/adma.202300913] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Population growth, urbanization, and decarbonization efforts are collectively straining the supply of limited resources that are necessary to produce batteries, electronics, chemicals, fertilizers, and other important products. Securing the supply chains of these critical resources via the development of separation technologies for their recovery represents a major global challenge to ensure stability and security. Surface water, groundwater, and wastewater are emerging as potential new sources to bolster these supply chains. Recently, a variety of material-based technologies have been developed and employed for separations and resource recovery in water. Judicious selection and design of these materials to tune their properties for targeting specific solutes is central to realizing the potential of water as a source for critical resources. Here, the materials that are developed for membranes, sorbents, catalysts, electrodes, and interfacial solar steam generators that demonstrate promise for applications in critical resource recovery are reviewed. In addition, a critical perspective is offered on the grand challenges and key research directions that need to be addressed to improve their practical viability.
Collapse
Affiliation(s)
- Omar A Kazi
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Wen Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jamila G Eatman
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Feng Gao
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yining Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yuqin Wang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Zijing Xia
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Seth B Darling
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
12
|
Wang Q, Hu L, Ma H, Venkateswaran S, Hsiao BS. High-Flux Nanofibrous Composite Reverse Osmosis Membrane Containing Interfacial Water Channels for Desalination. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37192294 DOI: 10.1021/acsami.2c15509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A nanofibrous composite reverse osmosis (RO) membrane with a polyamide barrier layer containing interfacial water channels was fabricated on an electrospun nanofibrous substrate via an interfacial polymerization process. The RO membrane was employed for desalination of brackish water and exhibited enhanced permeation flux as well as rejection ratio. Nanocellulose was prepared by sequential oxidations of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and sodium periodate systems and surface grafting with different alkyl groups including octyl, decanyl, dodecanyl, tetradecanyl, cetyl, and octadecanyl groups. The chemical structure of the modified nanocellulose was verified subsequently by Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), and solid NMR measurements. Two monomers, trimesoyl chloride (TMC) and m-phenylenediamine (MPD), were employed to prepare a cross-linked polyamide matrix, i.e., the barrier layer of the RO membrane, which integrated with the alkyl groups-grafted nanocellulose to build up interfacial water channels via interfacial polymerization. The top and cross-sectional morphologies of the composite barrier layer were observed by means of scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) to verify the integration structure of the nanofibrous composite containing water channels. The aggregation and distribution of water molecules in the nanofibrous composite RO membrane verified the existence of water channels, demonstrated by molecular dynamics (MD) simulations. The desalination performance of the nanofibrous composite RO membrane was conducted and compared with that of commercially available RO membranes in the processing of brackish water, where 3 times higher permeation flux and 99.1% rejection ratio against NaCl were accomplished. This indicated that the engineering of interfacial water channels in the barrier layer could substantially increase the permeation flux of the nanofibrous composite membrane while retaining the high rejection ratio as well, i.e., to break through the trade-off between permeation flux and rejection ratio. Antifouling properties, chlorine resistance, and long-term desalination performance were also demonstrated to evaluate the potential applications of the nanofibrous composite RO membrane; remarkable durability and robustness were achieved in addition to 3 times higher permeation flux and a higher rejection ratio against commercial RO membranes in brackish water desalination.
Collapse
Affiliation(s)
- Qihang Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lifen Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyang Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Shyam Venkateswaran
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
13
|
Mazzilli V, Satoh K, Saielli G. Phase behaviour of mixtures of charged soft disks and spheres. SOFT MATTER 2023; 19:3311-3324. [PMID: 37093590 DOI: 10.1039/d3sm00223c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have investigated the phase behaviour of mixtures of soft disks (Gay-Berne oblate ellipsoids, GB) and soft spheres (Lennard-Jones, LJ) with opposite charge as a model of ionic liquid crystals and colloidal suspensions. We have used constant volume Molecular Dynamics simulations and fixed the stoichiometry of the mixture in order to have electroneutrality; three systems have been selected GB : LJ = 1 : 2, GB : LJ = 1 : 1 and GB : LJ = 2 : 1. For each system we have selected three values of the scaled point charge q* of the GB particles, namely 0.5, 1.0 and 2.0 (and a corresponding negative scaled charge of the LJ particles that depends on the stoichiometric ratio). We have found a very rich mesomorphism with the formation, as a function of the scaled temperature, of the isotropic phase, the discotic nematic phase, the hexagonal columnar phase and crystal phases. While the structure of the high temperature phases was similar in all systems, the hexagonal columnar phases exhibited a highly variable morphology depending on the scaled charge and stoichiometry. On the one hand, GB : LJ = 1 : 2 systems form lamellar structures, akin to smectic phases, with an alternation of layers of disks (exhibiting an hexagonal columnar phase) and layers of LJ particles (in the isotropic phase). On the other hand, for the 2 : 1 stoichiometry we observe the formation of a frustrated hexagonal columnar phase with an alternating tilt direction of the molecular axis. We rationalize these findings based on the structure of the neutral ion pair dominating the behaviour at low temperature and high charge.
Collapse
Affiliation(s)
- Valerio Mazzilli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
- CNR-ITM, Institute on Membrane Technology, Padova Unit, Via Marzolo, 1, 35131 Padova, Italy
| | - Katsuhiko Satoh
- Department of Chemistry, Osaka Sangyo University, Daito, Osaka, 574-8530, Japan.
| | - Giacomo Saielli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
- CNR-ITM, Institute on Membrane Technology, Padova Unit, Via Marzolo, 1, 35131 Padova, Italy
| |
Collapse
|
14
|
Inorganic salt-conditioning preparation of a copper (II) ions-doped thin film composite membrane with ridge-valley morphology for efficient organic solvent nanofiltration. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
15
|
Methods and strategies for producing porous photocatalysts: Review. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Wang Z, Wang C, Sun Y, Wang K, Strzalka JW, Patel SN, Nealey PF, Ober CK, Escobedo FA. Ion Transport in 2D Nanostructured π-Conjugated Thieno[3,2- b]thiophene-Based Liquid Crystal. ACS NANO 2022; 16:20714-20729. [PMID: 36475656 DOI: 10.1021/acsnano.2c07789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Leveraging the self-assembling behavior of liquid crystals designed for controlling ion transport is of both fundamental and technological significance. Here, we have designed and prepared a liquid crystal that contains 2,5-bis(thien-2-yl)thieno[3,2-b]thiophene (BTTT) as mesogenic core and conjugated segment and symmetric tetra(ethylene oxide) (EO4) as polar side chains for ion-conducting regions. Driven by the crystallization of the BTTT cores, BTTT/dEO4 exhibits well-ordered smectic phases below 71.5 °C as confirmed by differential scanning calorimetry, polarized optical microscopy, temperature-dependent wide-angle X-ray scattering, and grazing incidence wide-angle X-ray scattering (GIWAXS). We adopted a combination of experimental GIWAXS and molecular dynamics (MD) simulations to better understand the molecular packing of BTTT/dEO4 films, particularly when loaded with the ion-conducting salt lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). Ionic conduction of BTTT/dEO4 is realized by the addition of LiTFSI, with the material able to maintain smectic phases up to r = [Li+]/[EO] = 0.1. The highest ionic conductivity of 8 × 10-3 S/cm was attained at an intermedium salt concentration of r = 0.05. It was also found that ion conduction in BTTT/dEO4 is enhanced by forming a smectic layered structure with irregular interfaces between the BTTT and EO4 layers and by the lateral film expansion upon salt addition. This can be explained by the enhancement of the misalignment and configurational entropy of the side chains, which increase their local mobility and that of the solvated ions. Our molecular design thus illustrates how, beyond the favorable energetic interactions that drive the assembly of ion solvating domains, modulation of entropic effects can also be favorably harnessed to improve ion conduction.
Collapse
Affiliation(s)
- Zhongyang Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois60637, United States
| | - Chaoqiuyu Wang
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York14853, United States
| | - Yangyang Sun
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York14853, United States
| | - Kai Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois60637, United States
| | | | - Shrayesh N Patel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois60637, United States
| | - Paul F Nealey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois60637, United States
| | - Christopher K Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York14853, United States
| | - Fernando A Escobedo
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York14853, United States
| |
Collapse
|
17
|
Liu C, Wang S, Wang N, Yu J, Liu YT, Ding B. From 1D Nanofibers to 3D Nanofibrous Aerogels: A Marvellous Evolution of Electrospun SiO 2 Nanofibers for Emerging Applications. NANO-MICRO LETTERS 2022; 14:194. [PMID: 36161372 PMCID: PMC9511469 DOI: 10.1007/s40820-022-00937-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/17/2022] [Indexed: 05/14/2023]
Abstract
One-dimensional (1D) SiO2 nanofibers (SNFs), one of the most popular inorganic nanomaterials, have aroused widespread attention because of their excellent chemical stability, as well as unique optical and thermal characteristics. Electrospinning is a straightforward and versatile method to prepare 1D SNFs with programmable structures, manageable dimensions, and modifiable properties, which hold great potential in many cutting-edge applications including aerospace, nanodevice, and energy. In this review, substantial advances in the structural design, controllable synthesis, and multifunctional applications of electrospun SNFs are highlighted. We begin with a brief introduction to the fundamental principles, available raw materials, and typical apparatus of electrospun SNFs. We then discuss the strategies for preparing SNFs with diverse structures in detail, especially stressing the newly emerging three-dimensional SiO2 nanofibrous aerogels. We continue with focus on major breakthroughs about brittleness-to-flexibility transition of SNFs and the means to achieve their mechanical reinforcement. In addition, we showcase recent applications enabled by electrospun SNFs, with particular emphasis on physical protection, health care and water treatment. In the end, we summarize this review and provide some perspectives on the future development direction of electrospun SNFs.
Collapse
Affiliation(s)
- Cheng Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Sai Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Ni Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Yi-Tao Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
18
|
Monti J, Concellón A, Dong R, Simmler M, Münchinger A, Huck C, Tegeder P, Nirschl H, Wegener M, Osuji CO, Blasco E. Two-Photon Laser Microprinting of Highly Ordered Nanoporous Materials Based on Hexagonal Columnar Liquid Crystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33746-33755. [PMID: 35849651 DOI: 10.1021/acsami.2c10106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoporous materials relying on supramolecular liquid crystals (LCs) are excellent candidates for size- and charge-selective membranes. However, whether they can be manufactured using printing technologies remained unexplored so far. In this work, we develop a new approach for the fabrication of ordered nanoporous microstructures based on supramolecular LCs using two-photon laser printing. In particular, we employ photo-cross-linkable hydrogen-bonded complexes, that self-assemble into columnar hexagonal (Colh) mesophases, as the base of our printable photoresist. The presence of photopolymerizable groups in the periphery of the molecules enables the printability using a laser. We demonstrate the conservation of the Colh arrangement and of the adsorptive properties of the materials after laser microprinting, which highlights the potential of the approach for the fabrication of functional nanoporous structures with a defined geometry. This first example of printable Colh LC should open new opportunities for the fabrication of functional porous microdevices with potential application in catalysis, filtration, separation, or molecular recognition.
Collapse
Affiliation(s)
- Joël Monti
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Alberto Concellón
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Ruiqi Dong
- Department of Chemical and Biomolecular Engineering, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mira Simmler
- Institute of Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Alexander Münchinger
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Christian Huck
- Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Petra Tegeder
- Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Hermann Nirschl
- Institute of Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Martin Wegener
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Chinedum O Osuji
- Department of Chemical and Biomolecular Engineering, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eva Blasco
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
- Center for Advanced Materials (CAM), Heidelberg University, Heidelberg 69120, Germany
- Organic Chemistry Institute, Heidelberg University, Hedelberg 69120, Germany
| |
Collapse
|
19
|
Tao L, Xiao A, Lyu X, Tang Z, Yu Z, Shen Z, Fan X. Preparation of Complex Ratio‐Dependent Nanomaterials from Polymerizable Hydrogen‐Bonded Liquid Crystal. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Tao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Shenzhen Key Laboratory of Functional Polymers, School of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 PR China
| | - Anqi Xiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xiaolin Lyu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhehao Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhen‐Qiang Yu
- Shenzhen Key Laboratory of Functional Polymers, School of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 PR China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xinghe Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
20
|
Uchida J, Soberats B, Gupta M, Kato T. Advanced Functional Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109063. [PMID: 35034382 DOI: 10.1002/adma.202109063] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Liquid crystals have been intensively studied as functional materials. Recently, integration of various disciplines has led to new directions in the design of functional liquid-crystalline materials in the fields of energy, water, photonics, actuation, sensing, and biotechnology. Here, recent advances in functional liquid crystals based on polymers, supramolecular complexes, gels, colloids, and inorganic-based hybrids are reviewed, from design strategies to functionalization of these materials and interfaces. New insights into liquid crystals provided by significant progress in advanced measurements and computational simulations, which enhance new design and functionalization of liquid-crystalline materials, are also discussed.
Collapse
Affiliation(s)
- Junya Uchida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Bartolome Soberats
- Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa Km. 7.5, Palma de Mallorca, 07122, Spain
| | - Monika Gupta
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Initiative for Supra-Materials, Shinshu University, Wakasato, Nagano, 380-8553, Japan
| |
Collapse
|
21
|
Lugger SJ, Houben SJA, Foelen Y, Debije MG, Schenning APHJ, Mulder DJ. Hydrogen-Bonded Supramolecular Liquid Crystal Polymers: Smart Materials with Stimuli-Responsive, Self-Healing, and Recyclable Properties. Chem Rev 2022; 122:4946-4975. [PMID: 34428022 PMCID: PMC8915167 DOI: 10.1021/acs.chemrev.1c00330] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 01/18/2023]
Abstract
Hydrogen-bonded liquid crystalline polymers have emerged as promising "smart" supramolecular functional materials with stimuli-responsive, self-healing, and recyclable properties. The hydrogen bonds can either be used as chemically responsive (i.e., pH-responsive) or as dynamic structural (i.e., temperature-responsive) moieties. Responsiveness can be manifested as changes in shape, color, or porosity and as selective binding. The liquid crystalline self-organization gives the materials their unique responsive nanostructures. Typically, the materials used for actuators or optical materials are constructed using linear calamitic (rod-shaped) hydrogen-bonded complexes, while nanoporous materials are constructed from either calamitic or discotic (disk-shaped) complexes. The dynamic structural character of the hydrogen bond moieties can be used to construct self-healing and recyclable supramolecular materials. In this review, recent findings are summarized, and potential future applications are discussed.
Collapse
Affiliation(s)
- Sean J.
D. Lugger
- Stimuli-responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Simon J. A. Houben
- Stimuli-responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Yari Foelen
- Stimuli-responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Michael G. Debije
- Stimuli-responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Albert P. H. J. Schenning
- Stimuli-responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- SCNU-TUE
Joint Laboratory of Device Integrated Responsive Materials (DIRM), South China Normal University, Guangzhou Higher Education Mega Center, 510006 Guangzhou, China
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands
| | - Dirk J. Mulder
- Stimuli-responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
22
|
Zeng H, Liang T, Zhang H, Wang Y, Wen J, Yu HR, Cheng C. Anisotropic Dyes Adsorption by Templated Smectic Nanoporous Polymer Films: Pore Size vs Pore Charges Affecting the Adsorption. NEW J CHEM 2022. [DOI: 10.1039/d2nj01350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective 2-dimentional (2D) nanoporous polymer films have been developed by a templating method based on hydrogen-bonding supramolecular liquid crystals (LCs) containing benzoic acid and pyridine groups (6OBA·NC6·C6H). The smectic lamellar...
Collapse
|
23
|
Abstract
Smart soft materials are envisioned to be the building blocks of the next generation of advanced devices and digitally augmented technologies. In this context, liquid crystals (LCs) owing to their responsive and adaptive attributes could serve as promising smart soft materials. LCs played a critical role in revolutionizing the information display industry in the 20th century. However, in the turn of the 21st century, numerous beyond-display applications of LCs have been demonstrated, which elegantly exploit their controllable stimuli-responsive and adaptive characteristics. For these applications, new LC materials have been rationally designed and developed. In this Review, we present the recent developments in light driven chiral LCs, i.e., cholesteric and blue phases, LC based smart windows that control the entrance of heat and light from outdoor to the interior of buildings and built environments depending on the weather conditions, LC elastomers for bioinspired, biological, and actuator applications, LC based biosensors for detection of proteins, nucleic acids, and viruses, LC based porous membranes for the separation of ions, molecules, and microbes, living LCs, and LCs under macro- and nanoscopic confinement. The Review concludes with a summary and perspectives on the challenges and opportunities for LCs as smart soft materials. This Review is anticipated to stimulate eclectic ideas toward the implementation of the nature's delicate phase of matter in future generations of smart and augmented devices and beyond.
Collapse
Affiliation(s)
- Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States.,Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
24
|
Towards a High-Flux Separation Layer from Hexagonal Lyotropic Liquid Crystals for Thin-Film Composite Membranes. MEMBRANES 2021; 11:membranes11110842. [PMID: 34832071 PMCID: PMC8624768 DOI: 10.3390/membranes11110842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022]
Abstract
Hexagonal lyotropic liquid crystals (HLLC) with uniform pore size in the range of 1~5 nm are highly sought after as promising active separation layers of thin-film composite (TFC) membranes, which have been confirmed to be efficient for water purification. The potential interaction between an amphiphile-based HLLC layer and the substrate surface, however, has not been fully explored. In this research, hydrophilic and hydrophobic microporous polyvinylidene fluoride (PVDF) substrates were chosen, respectively, to prepare TFC membranes with the active layers templated from HLLC, consisting of dodecyl trimethylammonium bromide, water, and a mixture of poly (ethylene glycol) diacrylate and 2-hydroxyethyl methacrylate. The pore size of the active layer was found to decrease by about 1.6 Å compared to that of the free-standing HLLC after polymerization, but no significant difference was observable by using either hydrophilic or hydrophobic substrates (26.9 Å vs. 27.1 Å). The water flux of the TFC membrane with the hydrophobic substrate, however, was higher than that with the hydrophilic one. A further investigation confirmed that the increase in water flux originated from a much higher porosity was due to the synergistic effect of the hydrophilic HLLC nanoporous material and the hydrophobic substrate.
Collapse
|