1
|
Fan F, Zhao L, Guo Y, Xu H, Wang T, Fu Y. Fabrication of a ZIF-8/PVA Membrane on PVDF Fiber by Spray for the Highly Efficient Separation of Oil-in-Water Emulsions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54548-54554. [PMID: 39327069 DOI: 10.1021/acsami.4c10099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
In human life and production, excessive oily wastewaters containing detergents are produced and discharged, causing severe environmental pollution and water resource problems. A metal-organic framework (MOF)-based membrane is an economical and environmentally friendly tool for emulsion separation but is limited by a complex preparation process and poor flexibility. Herein, we developed a simple method to synthesize a MOF-based mixed-matrix membrane (MMM) by spray and fabricated the membrane on poly(vinylidene fluoride) (PVDF) fibers via postdeposition and in situ growth manners. The prepared ZIF-8/PVA MMMs have uniform distribution of ZIF-8 particles and poly(vinyl alcohol) (PVA) on the PVDF fibers. PVA improved the adhesion between the ZIF-8 particles and between the MOF layer and PVDF fiber, endowing the separation membrane with high flexibility and bendability. The prepared ZIF-8/PVA membrane exhibited hydrophilicity and underwater superoleophobicity, which showed high separation efficiency and considerable water flux for emulsions, emulsion containing dye, and surfactant-stabilized emulsion. In addition, the fabricated ZIF-8/PVA/PVDF fibers exhibited good antifouling property and flexibility and can maintain stable separation efficiency after working several times and even under bending, demonstrating the stability and potentiality of the ZIF-8/PVA/PVDF fibers in practical applications. This work paves a new avenue for the synthesis and application of MOF-based MMMs.
Collapse
Affiliation(s)
- Fuqiang Fan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Lin Zhao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yan Guo
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Hang Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Tieqiang Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
2
|
Park J, Kang S, Park E, Lee D, Park J, Kim D, Choi SQ, Kim K. A facile method for separating fine water droplets dispersed in oil through a pre-wetted mesh membrane. iScience 2024; 27:109556. [PMID: 38617558 PMCID: PMC11015444 DOI: 10.1016/j.isci.2024.109556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/08/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024] Open
Abstract
To achieve the successful separation of emulsions containing fine dispersed droplets and low volume fractions, a membrane with pore sizes comparable to or smaller than the droplet size is typically required. Although this approach is effective, its utilization is limited to the separation of emulsions with relatively large droplets. To overcome this limitation, a secondary membrane can be formed on the primary membrane to reduce pore size, but this can also be time-consuming and costly. Therefore, a facile and effective method is still required to be developed for separating emulsions with fine droplets. We introduce a pre-wetted mesh membrane with a pore size significantly larger than droplets, easily fabricated by wetting a hydrophilic stainless-steel mesh with water. Applying this membrane to emulsion separation via gravity-driven flow confirms a high efficiency greater than 98%, even with droplets approximately 10 times smaller than the pore size.
Collapse
Affiliation(s)
- JiEun Park
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, Republic of Korea
| | - Seunghan Kang
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - EunSol Park
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, Republic of Korea
| | - Dongho Lee
- Process R&D center, Hanwha solutions R&D institute, Daejeon 34128, Republic of Korea
| | - Jeasung Park
- Green and sustainable materials R&D department, Korea institute of industrial technology (KITECH), Cheonan 31056, Republic of Korea
| | - Donghun Kim
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Siyoung Q. Choi
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - KyuHan Kim
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, Republic of Korea
| |
Collapse
|
3
|
Huang J, Ran X, Sun L, Bi H, Wu X. Recent advances in membrane technologies applied in oil-water separation. DISCOVER NANO 2024; 19:66. [PMID: 38619656 PMCID: PMC11018733 DOI: 10.1186/s11671-024-04012-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Effective treatment of oily wastewater, which is toxic and harmful and causes serious environmental pollution and health risks, has become an important research field. Membrane separation technology has emerged as a key area of investigation in oil-water separation research due to its high separation efficiency, low costs, and user-friendly operation. This review aims to report on the advances in the research of various types of separation membranes around emulsion permeance, separation efficiency, antifouling efficiency, and stimulus responsiveness. Meanwhile, the challenges encountered in oil-water separation membranes are examined, and potential research avenues are identified.
Collapse
Affiliation(s)
- Jialu Huang
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China
| | - Xu Ran
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, 210096, China
| | - Hengchang Bi
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China.
| | - Xing Wu
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
4
|
Kilic NM, Gelen SS, Er Zeybekler S, Odaci D. Carbon-Based Nanomaterials Decorated Electrospun Nanofibers in Biosensors: A Review. ACS OMEGA 2024; 9:3-15. [PMID: 38222586 PMCID: PMC10785068 DOI: 10.1021/acsomega.3c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
Nanomaterials have revolutionized scientific research due to their exceptional physical and chemical capabilities. Carbon-based nanomaterials such as graphene and its derivates have excellent electrical, optical, thermal, physical, and chemical properties that have made them indispensable in several industries worldwide, including medicine, electronics, and energy. By incorporating carbon-based nanomaterials as nanofillers in electrospun nanofibers (ESNFs), smoother and highly conductive nanofibers can be achieved that possess a large surface area and porosity. This approach provides a superior alternative to traditional materials in the development of improved biosensors. Carbon-based ESNFs, among the most exciting new-generation materials, have many applications, including filtration, pharmaceuticals, biosensors, and membranes. The electrospinning technique is a highly efficient and cost-effective method for producing desired nanofibers compared to other methods. Various types of natural and synthetic organic polymers have been successfully utilized in solution electrospinning to produce nanofibers directly. To create diagnostics devices, various biomolecules like antibodies, enzymes, aptamers, ligands, and even cells can be bound to the surface of nanofibers. Electrospun nanofibers can serve as an immobilization matrix to create a biofunctional surface. Thus, biosensors with desired features can be produced in this way. This study comprehensively reviews biosensors that integrate nanodiamonds, fullerenes, carbon nanotubes, graphene oxide, and carbon dots into electrospun nanofibers.
Collapse
Affiliation(s)
- Nur Melis Kilic
- Ege
University, Faculty of Science
Biochemistry Department, 35100 Bornova-Izmir, Turkey
| | - Sultan Sacide Gelen
- Ege
University, Faculty of Science
Biochemistry Department, 35100 Bornova-Izmir, Turkey
| | - Simge Er Zeybekler
- Ege
University, Faculty of Science
Biochemistry Department, 35100 Bornova-Izmir, Turkey
| | - Dilek Odaci
- Ege
University, Faculty of Science
Biochemistry Department, 35100 Bornova-Izmir, Turkey
| |
Collapse
|
5
|
Abuhasheesh YH, Hegab HM, Wadi VS, Al Marzooqi F, Banat F, Aljundi IH, Hasan SW. Phase inverted hydrophobic polyethersulfone/iron oxide-oleylamine ultrafiltration membranes for efficient water-in-oil emulsion separation. CHEMOSPHERE 2023:139431. [PMID: 37422217 DOI: 10.1016/j.chemosphere.2023.139431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/06/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Exploration and transportation of oil offshore can result in oil spills that cause a wide range of adverse environmental consequences and destroy aquatic life. Membrane technology outperformed the conventional procedures for oil emulsion separation due to its improved performance, reduced cost, removal capacity, and greater eco-friendly. In this study, a hydrophobic iron oxide-oleylamine (Fe-Ol) nanohybrid was synthesized and incorporated into polyethersulfone (PES) to prepare novel PES/Fe-Ol hydrophobic ultrafiltration (UF) mixed matrix membranes (MMMs). Several characterization techniques were performed to characterize the synthesized nanohybrid and fabricated membranes, including scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), contact angle, and zeta potential. The membranes' performance was assessed using a surfactant-stabilized (SS) water-in-hexane emulsion as a feed and a dead-end vacuum filtration setup. The incorporation of the nanohybrid enhanced the hydrophobicity, porosity, and thermal stability of the composite membranes. At 1.5 wt% Fe-Ol nanohybrid, the modified PES/Fe-Ol MMM membranes reported high water rejection efficiency of 97.4% and 1020.4 LMH filtrate flux. The re-usability and antifouling properties of the membrane were examined over five filtration cycles, demonstrating its great potential for use in water-in-oil separation.
Collapse
Affiliation(s)
- Yazan H Abuhasheesh
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Hanaa M Hegab
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Vijay S Wadi
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Faisal Al Marzooqi
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Isam H Aljundi
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Saudi Arabia
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
6
|
Yuan F, Yang R, Wang B, Gao Y, Li C, Sun Z. Composite nanofiber membrane embedded TiO2/diatomite catalyst for highly efficient mineralization of formaldehyde. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
7
|
Advanced Polymeric Nanocomposite Membranes for Water and Wastewater Treatment: A Comprehensive Review. Polymers (Basel) 2023; 15:polym15030540. [PMID: 36771842 PMCID: PMC9920371 DOI: 10.3390/polym15030540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Nanomaterials have been extensively used in polymer nanocomposite membranes due to the inclusion of unique features that enhance water and wastewater treatment performance. Compared to the pristine membranes, the incorporation of nanomodifiers not only improves membrane performance (water permeability, salt rejection, contaminant removal, selectivity), but also the intrinsic properties (hydrophilicity, porosity, antifouling properties, antimicrobial properties, mechanical, thermal, and chemical stability) of these membranes. This review focuses on applications of different types of nanomaterials: zero-dimensional (metal/metal oxide nanoparticles), one-dimensional (carbon nanotubes), two-dimensional (graphene and associated structures), and three-dimensional (zeolites and associated frameworks) nanomaterials combined with polymers towards novel polymeric nanocomposites for water and wastewater treatment applications. This review will show that combinations of nanomaterials and polymers impart enhanced features into the pristine membrane; however, the underlying issues associated with the modification processes and environmental impact of these membranes are less obvious. This review also highlights the utility of computational methods toward understanding the structural and functional properties of the membranes. Here, we highlight the fabrication methods, advantages, challenges, environmental impact, and future scope of these advanced polymeric nanocomposite membrane based systems for water and wastewater treatment applications.
Collapse
|
8
|
Ren W, Pan J, Gai W, Pan X, Chen H, Li J, Huang L. Fabrication and characterization of PVDF-CTFE/SiO2 electrospun nanofibrous membranes with micro and nano-rough structures for efficient oil-water separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Ahmad T, Liu X, Guria C. Preparation of polyvinyl chloride (PVC) membrane blended with acrylamide grafted bentonite for oily water treatment. CHEMOSPHERE 2023; 310:136840. [PMID: 36257392 DOI: 10.1016/j.chemosphere.2022.136840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/18/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The current work aims to advance the hydrophilicity, morphology, and antifouling characteristics of polyvinyl chloride (PVC) membranes for oily wastewater separation by incorporating modified bentonite. The surface of bentonite nanoparticles is altered by adopting the "grafting from" method using the surface-initiated atom transfer radical polymerization (SI-ATRP) approach. The PVC-based membrane is first prepared by blending acrylamide grafted bentonite (AAm-g-bentonite). AAm is grafted on bentonite in the presence of 2,2'-Bipyridyl and copper (I) bromide as a catalyst. The modified bentonite nanoparticles are studied using multiple techniques, such as fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), sedimentation tests, field emission scanning electron microscope (FE-SEM), etc. Flat-sheet PVC-based membrane is prepared by blending AAm-g-bentonite using the nonsolvent induced phase separation (NIPS) technique. Different methods, including FE-SEM, FTIR, sedimentation test, contact angle, porosity, antifouling property, and filtration studies of pure and oily water, are used to characterize and determine the performance of mixed-matrix membranes. Membrane performance is improved in the presence of modified bentonite (i.e., AAm-g-bentonite), with the best result achieved at PVC/AAm-g-ben-8 (i.e., 8 wt % of AAm-g-bentonite). Enhanced pure water flux (293.14 Lm-2h-1), permeate flux (123.96 Lm-2h-1), and oil rejection >93.2% are obtained by the reduced contact angle (49.1°) and improved porosity (71.22%).
Collapse
Affiliation(s)
- Tausif Ahmad
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Department of Petroleum Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India.
| | - Xiaowei Liu
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Chandan Guria
- Department of Petroleum Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India.
| |
Collapse
|
10
|
Liu H, Sun Y, Xu H, Qin Y, Huang Q, Chen K, Shu W, Xiao C. Dual-functional design of tubular polyvinyl chloride hybrid nanofiber membranes for the simultaneous oil/water separation and in-situ catalytic degradation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Tian D, Qu Z, Lai T, Zhu G. A prediction model for nanoparticle diffusion behavior in fibrous materials considering steric and hydrodynamic resistances. Phys Chem Chem Phys 2022; 24:24394-24403. [PMID: 36189674 DOI: 10.1039/d2cp03397f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precise prediction of the hindered diffusion behavior of electroneutral particles in fibrous media plays a critical role in the development of drugs, polymer membranes, and porous electrodes. However, the random microstructure and unknown coupling relationship of multiple resistance mechanisms lead to the lack of a universal prediction model. In this work, a dual-resistance model is proposed by reconstructed pore-scale simulations, which presents the coexistence of steric and hydrodynamic resistances in the multiplication form. The simulation results show that the relationship between steric resistance and structural parameters (porosity, fiber radius, and particle radius) is exponential, while that for hydrodynamic resistance is polynomial. The dominant diffusion resistance is found to change from hydrodynamic to steric resistance with a decrease in porosity. The fluorescent polystyrene microsphere diffusivity in a series of SiO2 fibrous media is determined by single-particle tracking experiments, quantitatively confirming the dual-resistance model. The present model can be used for rapid diffusivity prediction and fibrous membrane and drug design.
Collapse
Affiliation(s)
- Di Tian
- MOE Key Laboratory of Thermal-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Zhiguo Qu
- MOE Key Laboratory of Thermal-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Tao Lai
- MOE Key Laboratory of Thermal-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Guodong Zhu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| |
Collapse
|
12
|
Cao M, Xiao F, Yang Z, Chen Y, Lin L. Purification of oil-containing emulsified wastewater via PAN nanofiber membrane loading PVP-UiO-66-NH2. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Three-dimensional and Flexible Carbon Nanofiber Mat by One-step Electrospinning for Efficient Oil/Water Separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Engineering of macroscale graphene oxide quantum dots skeleton membrane via electrostatic spraying method. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Sun X, Wang X, Li J, Huang L, Sun H, Hao Y, Bai L, Pan J, Gao X. Enhanced oil–water separation via superhydrophobic electrospun carbon fiber membrane decorated with Ni nanoclusters. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Cao M, Xiao F, Yang Z, Chen Y, Lin L. Construction of Polytetrafluoroethylene nanofiber membrane via continuous electrospinning/electrospraying strategy for oil-water separation and demulsification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Superwettable neuron-inspired polyurethane nanofibrous materials with efficient selective separation performance towards various fluids. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Hammami MA, Kanj MY, Giannelis EP. Monitoring the Early Stages of Formation of Oil-Water Emulsions Using Flow Cytometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:62-71. [PMID: 34958229 DOI: 10.1021/acs.langmuir.1c01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Characterization of complex oil emulsions is critical yet challenging both in science and in many industrial applications. Here we demonstrate for the first time the use of flow cytometry as a fast method for characterizing complex, polydisperse oil-water emulsions. Owing to our interest in understanding how the presence of specific ions might affect the properties of oil-water emulsions including size, polydispersity, and complexity, we present a systematic study of oil emulsions in deionized water and various brines of different ionic strength. Forward scatter (FSC) and side scatter (SSC) intensities associated with detailed statistics were judiciously combined to provide a better understanding of these complex systems. We find that the type and concentration profiles of ions around the oil droplets affect significantly the properties of the emulsion. Weakly hydrated cations NH4+ and Ca2+ appear to be more effective in screening the charge of oil droplets compared to the monovalent Na+ and divalent Mg2+ ions, respectively. As a result, coalescence and formation of larger droplets are seen in the case of NH4Cl and CaCl2 compared to NaCl and MgCl2, respectively. In addition, weakly hydrated anions such as Cl- can come closer to the oil surface and, thus, decrease the effective screening that the Na+ ions provide as compared to SO42- ions, which leads to more stable emulsions in NaCl compared to Na2SO4. In addition to these specific findings, the work demonstrates the utility of the technique as a new tool for characterizing oil emulsions in a wide spectrum of fields ranging from food to oil and gas applications.
Collapse
Affiliation(s)
- Mohamed Amen Hammami
- Department of Materials Science and Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Mazen Y Kanj
- Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals, Dhahran, KSA 31261, Saudi Arabia
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Khraisheh M, Elhenawy S, AlMomani F, Al-Ghouti M, Hassan MK, Hameed BH. Recent Progress on Nanomaterial-Based Membranes for Water Treatment. MEMBRANES 2021; 11:995. [PMID: 34940495 PMCID: PMC8709222 DOI: 10.3390/membranes11120995] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Nanomaterials have emerged as the new future generation materials for high-performance water treatment membranes with potential for solving the worldwide water pollution issue. The incorporation of nanomaterials in membranes increases water permeability, mechanical strength, separation efficiency, and reduces fouling of the membrane. Thus, the nanomaterials pave a new pathway for ultra-fast and extremely selective water purification membranes. Membrane enhancements after the inclusion of many nanomaterials, including nanoparticles (NPs), two-dimensional (2-D) layer materials, nanofibers, nanosheets, and other nanocomposite structural materials, are discussed in this review. Furthermore, the applications of these membranes with nanomaterials in water treatment applications, that are vast in number, are highlighted. The goal is to demonstrate the significance of nanomaterials in the membrane industry for water treatment applications. It was found that nanomaterials and nanotechnology offer great potential for the advancement of sustainable water and wastewater treatment.
Collapse
Affiliation(s)
- Majeda Khraisheh
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.); (B.H.H.)
| | - Salma Elhenawy
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.); (B.H.H.)
| | - Fares AlMomani
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.); (B.H.H.)
| | - Mohammad Al-Ghouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar;
| | | | - Bassim H. Hameed
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.); (B.H.H.)
| |
Collapse
|
20
|
Wang Y, Zhao S, Guo Z, Huang J, Liu W. Multi-layer superhydrophobic nickel foam (NF) composite for highly efficient water-in-oil emulsion separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Jiang J, Shao Z, Wang X, Zhu P, Deng S, Li W, Zheng G. Three-dimensional composite electrospun nanofibrous membrane by multi-jet electrospinning with sheath gas for high-efficiency antibiosis air filtration. NANOTECHNOLOGY 2021; 32:245707. [PMID: 33657545 DOI: 10.1088/1361-6528/abeb9a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Three-dimensional (3D) composite polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN) electrospun nanofibrous membranes combining both thick and thin nanofibers have been fabricated by the method of multi-jet electrospinning with sheath gas to realize high-efficiency air filtration under a low pressure drop. The thin PAN nanofibers form a dense membrane, with a strong capturing ability on the ultra-fine particles, while the thick PVDF nanofibers play a 3D supporting effect on the thin PAN nanofibers. In this case, the combination results in a fluffy membrane with higher porosity, which could achieve the airflow passing through the membrane without the air pressure drop. The effects of the composite manner of thick nanofibers and thin nanofibers are investigated, in order to optimize the air filtration performance of the 3D composite nanofibrous membrane. As a result, the maximum quality factor for air filtration could reach up to 0.398 Pa-1. The particle-fiber interaction model was used to simulate the air filtration process as well, and the simulation results were fairly consistent with the experimental results, providing a guidance method for the optimization of composite nanofibrous membrane for high-efficiency air filtration. More interestingly, a cationic poly[2-(N,N-dimethyl amino) ethyl methacrylate] (PDMAEMA) was added in the PVDF solution to obtain a composite air filtration membrane with excellent antibiosis performance, which achieved the highest inhibition rate of approximately 90%. In short, this work provides an effective way to promote antibiosis air filtration performance by using an electrospun nanofibrous membrane, and might also effectively accelerate the biological protection application of current air filtration membranes.
Collapse
Affiliation(s)
- Jiaxin Jiang
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, People's Republic of China
| | - Zungui Shao
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, People's Republic of China
| | - Xiang Wang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, People's Republic of China
| | - Ping Zhu
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, People's Republic of China
| | - Shiqing Deng
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, People's Republic of China
| | - Wenwang Li
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, People's Republic of China
| | - Gaofeng Zheng
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, People's Republic of China
| |
Collapse
|
22
|
A Review on Electrospun PVC Nanofibers: Fabrication, Properties, and Application. FIBERS 2021. [DOI: 10.3390/fib9020012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polyvinyl chloride (PVC) is a widely used polymer, not only in industry, but also in our daily life. PVC is a material that can be applied in many different fields, such as building and construction, health care, and electronics. In recent decades, the success of electrospinning technology to fabricate nanofibers has expanded the applicability of polymers. PVC nanofibers have been successfully manufactured by electrospinning. By changing the initial electrospinning parameters, it is possible to obtain PVC nanofibers with diameters ranging from a few hundreds of nanometers to several micrometers. PVC nanofibers have many advantages, such as high porosity, high mechanical strength, large surface area, waterproof, and no toxicity. PVC nanofibers have been found to be very useful in many fields with a wide variety of applications such as air filtration systems, water treatment, oil spill treatment, batteries technology, protective clothing, corrosion resistance, and many others. This paper reviews the fabricating method, properties, applications, and prospects of PVC nanofibers.
Collapse
|