1
|
Wang L, Li Z, Fan J, Han Z. The intelligent prediction of membrane fouling during membrane filtration by mathematical models and artificial intelligence models. CHEMOSPHERE 2024; 349:141031. [PMID: 38145849 DOI: 10.1016/j.chemosphere.2023.141031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Recently, membrane separation technology has been widely utilized in filtration process intensification due to its efficient performance and unique advantages, but membrane fouling limits its development and application. Therefore, the research on membrane fouling prediction and control technology is crucial to effectively reduce membrane fouling and improve separation performance. This review first introduces the main factors (operating condition, material characteristics, and membrane structure properties) and the corresponding principles that affect membrane fouling. In addition, mathematical models (Hermia model and Tandem resistance model), artificial intelligence (AI) models (Artificial neural networks model and fuzzy control model), and AI optimization methods (genetic algorithm and particle swarm algorithm), which are widely used for the prediction of membrane fouling, are summarized and analyzed for comparison. The AI models are usually significantly better than the mathematical models in terms of prediction accuracy and applicability of membrane fouling and can monitor membrane fouling in real-time by working in concert with image processing technology, which is crucial for membrane fouling prediction and mechanism studies. Meanwhile, AI models for membrane fouling prediction in the separation process have shown good potential and are expected to be further applied in large-scale industrial applications for separation and filtration process intensification. This review will help researchers understand the challenges and future research directions in membrane fouling prediction, which is expected to provide an effective method to reduce or even solve the bottleneck problem of membrane fouling, and to promote the further application of AI modeling in environmental and food fields.
Collapse
Affiliation(s)
- Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China; Research Institute, Jilin University, Yibin, 644500, People's Republic of China
| | - Zonghao Li
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Jianhua Fan
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, People's Republic of China.
| | - Zhiwu Han
- Key Laboratory of Bionics Engineering of Ministry of Education, Jilin University, Changchun, 130022, People's Republic of China
| |
Collapse
|
2
|
Chu H, Zhang Z, Zhong H, Yang K, Sun P, Liao X, Cai M. Athermal Concentration of Blueberry Juice by Forward Osmosis: Food Additives as Draw Solution. MEMBRANES 2022; 12:808. [PMID: 36005724 PMCID: PMC9414217 DOI: 10.3390/membranes12080808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
This study is to evaluate the athermal forward osmosis (FO) concentration process of blueberry juice using food additives as a draw solution (DS). The effects of food additives, including citric acid, sodium benzoate, and potassium sorbate, on the concentration processes are studied, and their effects on the products and membranes are compared. Results show that all these three food additives can be alternative DSs in concentration, among which citric acid shows the best performance. The total anthocyanin content (TAC) of blueberry juice concentrated by citric acid, sodium benzoate, and potassium sorbate were 752.56 ± 29.04, 716.10 ± 30.80, and 735.31 ± 24.92 mg·L-1, respectively, increased by 25.5%, 17.8%, and 19.9%. Meanwhile, the total phenolic content (TPC) increased by 21.0%, 10.6%, and 16.6%, respectively. Citric acid, sodium benzoate, and potassium sorbate all might reverse into the concentrated juice in amounts of 3.083 ± 0.477, 1.497 ± 0.008, and 0.869 ± 0.003 g/kg, respectively. These reversed food additives can make the TPC and TAC in juice steadier during its concentration and storage. Accordingly, food additives can be an excellent choice for DSs in the FO concentration process of juices, not only improving the concentration efficiency but also increasing the stability of blueberry juice.
Collapse
Affiliation(s)
- Haoqi Chu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, Zhejiang University of Technology, China National Light Industry, Hangzhou 310014, China
| | - Zhihan Zhang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, Zhejiang University of Technology, China National Light Industry, Hangzhou 310014, China
| | - Huazhao Zhong
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, Zhejiang University of Technology, China National Light Industry, Hangzhou 310014, China
| | - Kai Yang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, Zhejiang University of Technology, China National Light Industry, Hangzhou 310014, China
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, Zhejiang University of Technology, China National Light Industry, Hangzhou 310014, China
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Key Laboratory for Food Nonthermal Processing, National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China
| | - Ming Cai
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, Zhejiang University of Technology, China National Light Industry, Hangzhou 310014, China
| |
Collapse
|
4
|
Xu B, Feng M, Tiliwa ES, Yan W, Wei B, Zhou C, Ma H, Wang B, Chang L. Multi-frequency power ultrasound green extraction of polyphenols from Pingyin rose: Optimization using the response surface methodology and exploration of the underlying mechanism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Ivić I, Kopjar M, Buljeta I, Pichler D, Mesić J, Pichler A. Influence of Reverse Osmosis Process in Different Operating Conditions on Phenolic Profile and Antioxidant Activity of Conventional and Ecological Cabernet Sauvignon Red Wine. MEMBRANES 2022; 12:76. [PMID: 35054602 PMCID: PMC8777971 DOI: 10.3390/membranes12010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
Red wine polyphenols are responsible for its colour, astringency, and bitterness. They are known as strong antioxidants that protect the human body from the harmful effects of free radicals and prevent various diseases. Wine phenolics are influenced by viticulture methods and vinification techniques, and therefore, conventionally and ecologically produced wines of the same variety do not have the same phenolic profile. Ecological viticulture avoids the use of chemical adjuvants in vineyards in order to minimise their negative influence on the environment, wine, and human health. The phenolic profile and antioxidant activity of wine can also be influenced by additional treatments, such as concentration by reverse osmosis. The aim of this study was to investigate the influence of four different pressures (2.5, 3.5, 4.5, and 5.5 MPa) and two temperature regimes (with and without cooling) on the phenolic profile and antioxidant activity of conventional and ecological Cabernet Sauvignon red wine during concentration by reverse osmosis. The results showed that retention of individual phenolic compounds depended on the applied processing parameters, chemical composition of the initial wine, and chemical properties of a compound. Higher pressure and retentate cooling favoured the retention of total polyphenols, flavonoids, and monomeric anthocyanins, compared to the opposite conditions. The same trend was observed for antioxidant activity.
Collapse
Affiliation(s)
- Ivana Ivić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (M.K.); (I.B.)
| | - Mirela Kopjar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (M.K.); (I.B.)
| | - Ivana Buljeta
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (M.K.); (I.B.)
| | | | - Josip Mesić
- Polytechnic in Požega, Vukovarska 17, 34000 Požega, Croatia;
| | - Anita Pichler
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (M.K.); (I.B.)
| |
Collapse
|