1
|
Zhang JC, Lv TR, Yin MJ, Ji YL, Jin CG, Chen BH, An QF. PEDOT:PSS Nanoparticle Membranes for Organic Solvent Nanofiltration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405285. [PMID: 39420752 DOI: 10.1002/smll.202405285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/28/2024] [Indexed: 10/19/2024]
Abstract
Recycling of valuable solutes and recovery of organic solvents via organic solvent nanofiltration (OSN) are important for sustainable development. However, the trade-off between solvent permeability and solute rejection hampers the application of OSN membranes. To address this issue, the poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) nanoparticle membrane with hierarchical pores is constructed for OSN via vacuum filtration. The small pores (the free volume of the polymer chain) charge for the solute rejection (high rejection efficiency for low molecule weight solute) and allow solvent passing while the large pores (the void between two PEDOT:PSS nanoparticles) promote the solvent transport. Owing to the lack of connectivity among the large pores, the fabricated PEDOT:PSS nanoparticle membrane enhanced solvent permeance while maintaining a high solute rejection efficiency. The optimized PEDOT:PSS membrane affords a MeOH permeance of 7.2 L m-2 h-1 bar-1 with over 90% rejection of organic dyes, food additives, and photocatalysts. Moreover, the rigidity of PEDOT endows the membrane with distinctive stability under high-pressure conditions. The membrane is used to recycle the valuable catalysts in a methanol solution for 150 h, maintaining good separation performance. Considering its high separation performance and stability, the proposed PEDOT:PSS membrane has great potential for industrial applications.
Collapse
Affiliation(s)
- Jia-Chen Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Tian-Run Lv
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Ming-Jie Yin
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yan-Li Ji
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Cheng-Gang Jin
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Bo-Hao Chen
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Quan-Fu An
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
2
|
Shen Y, Li Y, Yuan S, Shen J, Wang D, Zhang N, Niu J, Wang Z, Wang Z. Polyfunctional Arylamine Based Nanofiltration Membranes with Enhanced Aggressive Organic Solvents Resistance. NANO LETTERS 2024; 24:10169-10176. [PMID: 39109989 DOI: 10.1021/acs.nanolett.4c02403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Organic solvent nanofiltration (OSN) membranes with high separation performance and excellent stability in aggressive organic solvents are urgently desired for chemical separation. Herein, we utilized a polyfunctional arylamine tetra-(4-aminophenyl) ethylene (TAPE) to prepare a highly cross-linked polyamide membrane with a low molecular weight cut-off (MWCO) of 312 Da. Owing to its propeller-like conformation, TAPE formed micropores within the polyamide membrane and provided fast solvent transport channels. Importantly, the rigid conjugated skeleton and high connectivity between micropores effectively prevented the expansion of the polyamide matrix in aggressive organic solvents. The membrane maintained high separation performance even immersed in N,N-dimethylformamide for 90 days. Based on the aggregation-induced emission (AIE) effect of TAPE, the formation of polyamide membrane can be visually monitored by fluorescence imaging technology, which achieved visual guidance for membrane fabrication. This work provides a vital foundation for utilizing polyfunctional monomers in the interfacial polymerization reaction to prepare high-performance OSN membranes.
Collapse
Affiliation(s)
- Yun Shen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China
| | - Shideng Yuan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dong Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Na Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Jingyu Niu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Ziming Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Zhining Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
3
|
Xiao H, Feng Y, Goundry WRF, Karlsson S. Organic Solvent Nanofiltration in Pharmaceutical Applications. Org Process Res Dev 2024; 28:891-923. [PMID: 38660379 PMCID: PMC11036530 DOI: 10.1021/acs.oprd.3c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
Separation and purification in organic solvents are indispensable procedures in pharmaceutical manufacturing. However, they still heavily rely on the conventional separation technologies of distillation and chromatography, resulting in high energy and massive solvent consumption. As an alternative, organic solvent nanofiltration (OSN) offers the benefits of low energy consumption, low solid waste generation, and easy scale-up and incorporation into continuous processes. Thus, there is a growing interest in employing membrane technology in the pharmaceutical area to improve process sustainability and energy efficiency. This Review comprehensively summarizes the recent progress (especially the last 10 years) of organic solvent nanofiltration and its applications in the pharmaceutical industry, including the concentration and purification of active pharmaceutical ingredients, homogeneous catalyst recovery, solvent exchange and recovery, and OSN-assisted peptide/oligonucleotide synthesis. Furthermore, the challenges and future perspectives of membrane technology in pharmaceutical applications are discussed in detail.
Collapse
Affiliation(s)
- Hui Xiao
- Early
Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Yanyue Feng
- Early
Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca Gothenburg, SE-431 83 Mölndal, Sweden
| | - William R. F. Goundry
- Early
Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Staffan Karlsson
- Early
Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca Gothenburg, SE-431 83 Mölndal, Sweden
| |
Collapse
|
4
|
Tong YH, Luo LH, Jia R, Han R, Xu SJ, Xu ZL. Whether membranes developed for organic solvent nanofiltration (OSN) tend to be hydrophilic or hydrophobic? ── a review. Heliyon 2024; 10:e24330. [PMID: 38288011 PMCID: PMC10823098 DOI: 10.1016/j.heliyon.2024.e24330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/02/2023] [Accepted: 01/07/2024] [Indexed: 01/31/2024] Open
Abstract
In the past few decades, organic solvent nanofiltration (OSN) has attracted numerous researchers and broadly applied in various fields. Unlike conventional nanofiltration, OSN always faced a broad spectrum of solvents including polar solvents and non-polar solvents. Among those recently developed OSN membranes in lab-scale or widely used commercial membranes, researchers preferred to explore intrinsic materials or introduce nanomaterials into membranes to fabricate OSN membranes. However, the hydrophilicity of the membrane surface towards filtration performance was often ignored, which was the key factor in conventional aqueous nanofiltration. The influence of surface hydrophilicity on OSN performance was not studied systematically and thoroughly. Generally speaking, the hydrophilic OSN membranes performed well in the polar solvents while the hydrophobic OSN membranes work well in the non-polar solvent. Many review papers reviewed the basics, problems of the membranes, up-to-date studies, and applications at various levels. In this review, we have focused on the relationship between the surface hydrophilicity of OSN membranes and OSN performances. The history, theory, and mechanism of the OSN process were first recapped, followed by summarizing representative OSN research classified by surface hydrophilicity and types of membrane, which recent OSN research with its contact angles and filtration performance were listed. Finally, from the industrialization perspective, the application progress of hydrophilic and hydrophobic OSN membranes was introduced. We started with history and theory, presented many research and application cases of hydrophilic and hydrophobic OSN membranes, and discussed anticipated progress in the OSN field. Also, we pointed out some future research directions on the hydrophilicity of OSN membranes to deeply develop the effect made by membrane hydrophilicity on OSN performance for future considerations and stepping forward of the OSN industry.
Collapse
Affiliation(s)
- Yi-Hao Tong
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li-Han Luo
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Jia
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Han
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sun-Jie Xu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Electronic Chemicals Innovation Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Electronic Chemicals Innovation Institute, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Anjum F, Wessner M, Sadowski G. Membrane-Based Solvent Exchange Process for Purification of API Crystal Suspensions. MEMBRANES 2023; 13:263. [PMID: 36984651 PMCID: PMC10058991 DOI: 10.3390/membranes13030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Bottom-up approaches to producing aqueous crystal suspensions of active pharmaceutical ingredients (APIs), such as anti-solvent crystallisation, are gaining interest as they offer better control over surface properties compared to top-down approaches. However, one of the major challenges that needs to be addressed is the removal of organic solvents after the crystallisation step due to strict limitations regarding human exposure. Within this work, we investigated a process concept for the removal of solvent (i.e., ethanol) from the API crystal suspension using membrane-based diafiltration. A four-stage diafiltration process successfully reduced the ethanol concentration in the API (here, naproxen) crystal suspension below 0.5 wt% (the residual solvent limit as per ICH guidelines) with a water consumption of 1.5 g of added water per g of feed. The solvent exchange process had no negative influence on the stability of the crystals in suspension, as their size and polymorphic form remained unchanged. This work is a step towards the bottom-up production of API crystal suspension by applying solvent/anti-solvent crystallisation. It provides the proof of concept for establishing a process of organic solvent removal and offers an experimental framework to serve as the foundation for the design of experiments implementing a solvent exchange in API production processes.
Collapse
|
6
|
Intermolecular cross-linked polymer of intrinsic microporosity-1 (PIM-1)-based thin-film composite hollow fiber membrane for organic solvent nanofiltration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Preparation of microporous organic solvent nanofiltration (OSN) composite membrane from a novel tris-phenol monomer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Fang Q, Liu Q, Xie Z, Hill MR, Zhang K. Two dimensional laminar MoS2 modified PTMSP membranes with improved organic solvent nanofiltration performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Liu L, Liu S, Wang E, Su B. Hollow Fiber Membrane for Organic Solvent Nanofiltration: A Mini Review. MEMBRANES 2022; 12:membranes12100995. [PMID: 36295754 PMCID: PMC9607374 DOI: 10.3390/membranes12100995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/03/2023]
Abstract
Organic solvents take up 80% of the total chemicals used in pharmaceutical and related industries, while their reuse rate is less than 50%. Traditional solvent treatment methods such as distillation and evaporation have many disadvantages such as high cost, environmental unfriendliness, and difficulty in recovering heat-sensitive, high-value molecules. Organic solvent nanofiltration (OSN) has been a prevalent research topic for the separation and purification of organic solvent systems since the beginning of this century with the benefits of no-phase change, high operational flexibility, low cost, as well as environmental friendliness. Especially, hollow fiber (HF) OSN membranes have gained a lot of attention due to their high packing density and easy scale-up as compared with flat-sheet OSN membranes. This paper critically reviewed the recent research progress in the preparation of HF OSN membranes with high performance, including different materials, preparation methods, and modification treatments. This paper also predicts the future direction of HF OSN membrane development.
Collapse
Affiliation(s)
- Liyang Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China
- College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China
| | - Shaoxiao Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China
- College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China
| | - Enlin Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China
- College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China
| | - Baowei Su
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China
- College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China
| |
Collapse
|
10
|
Aristizábal SL, Upadhyaya L, Falca G, Gebreyohannes AY, Aijaz MO, Karim MR, Nunes SP. Acid-free fabrication of polyaryletherketone membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Fabrication of dialyzer membrane-based forward osmosis modules via vacuum-assisted interfacial polymerization for the preparation of dialysate. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Liao M, Zhu Y, Gong G, Qiao L. Thin-Film Composite Membranes with a Carbon Nanotube Interlayer for Organic Solvent Nanofiltration. MEMBRANES 2022; 12:817. [PMID: 36005732 PMCID: PMC9414755 DOI: 10.3390/membranes12080817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Compared to the traditional chemical-crosslinking-based polymer, the porous polytetrafluoroethylene (PTFE) substrate is considered to be an excellent support for the fabrication of thin-film composite (TFC) organic solvent nanofiltration (OSN) membranes. However, the low surface energy and chemical inertness of PTFE membranes presented major challenges for fabricating a polyamide active layer on its surface via interfacial polymerization (IP). In this study, a triple-layered TFC OSN membrane was fabricated via IP, which consisted of a PA top layer on a carbon nanotube (CNT) interlayer covering the macroporous PTFE substrate. The defect-free formation and cross-linking degree of the PA layer can be improved by controlling the CNT deposition amount to achieve a good OSN performance. This new TFC OSN membrane exhibited a high dye rejection (the rejection of Bright blue B > 97%) and a moderate and stable methanol permeated flux of approximately 8.0 L m−2 h−1 bar−1. Moreover, this TFC OSN membrane also exhibited an excellent solvent resistance to various organic solvents and long-term stability during a continuous OSN process.
Collapse
Affiliation(s)
- Mingjia Liao
- Chemical Engineering Department, Chongqing Chemical Industry Vocational College, Chongqing 401228, China
| | - Yun Zhu
- Institute of Resources and Security, Chongqing Vocational Institute of Engineering, Chongqing 401228, China
| | - Genghao Gong
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Lei Qiao
- Chongqing Academy of Eco-environmental Sciences, Chongqing 401147, China
| |
Collapse
|
13
|
Lau HS, Lau SK, Soh LS, Hong SU, Gok XY, Yi S, Yong WF. State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. MEMBRANES 2022; 12:539. [PMID: 35629866 PMCID: PMC9144028 DOI: 10.3390/membranes12050539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air purification. Among all of the membrane configurations, hollow fiber membranes hold promise due to their outstanding packing density and ease of module assembly. Herein, this review systematically outlines the fundamentals of hollow fiber membranes, which comprise the structural analyses and phase inversion mechanism. Furthermore, illustrations of the latest advances in the fabrication of organic, inorganic, and composite hollow fiber membranes are presented. Key findings on the utilization of hollow fiber membranes in microfiltration (MF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), pervaporation, gas and vapor separation, membrane distillation, and membrane contactor are also reported. Moreover, the applications in nuclear waste treatment and biomedical fields such as hemodialysis and drug delivery are emphasized. Subsequently, the emerging R&D areas, precisely on green fabrication and modification techniques as well as sustainable materials for hollow fiber membranes, are highlighted. Last but not least, this review offers invigorating perspectives on the future directions for the design of next-generation hollow fiber membranes for various applications. As such, the comprehensive and critical insights gained in this review are anticipated to provide a new research doorway to stimulate the future development and optimization of hollow fiber membranes.
Collapse
Affiliation(s)
- Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Siew Kei Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Leong Sing Soh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Seang Uyin Hong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Shouliang Yi
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA;
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
14
|
|
15
|
Goh KS, Chen Y, Ng DYF, Chew JW, Wang R. Organic solvent forward osmosis membranes for pharmaceutical concentration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119965] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
An ultrapermeable thin film composite membrane supported by “green” nanofibrous polyimide substrate for polar aprotic organic solvent recovery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Xing Y, Li Z, Baryshnikov GV, Shen S, Ye D, Ågren H, Zhu L. Water Molecular Bridge-Induced Selective Dual Polarization in Crystals for Stable Multi-Emitter. Chem Sci 2022; 13:6067-6073. [PMID: 35685795 PMCID: PMC9132028 DOI: 10.1039/d2sc00908k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
In the solid state, the molecular polarization of donor–acceptor (D–A) molecules can be implemented in a simple way via the use of an external polarizing source (e.g., an electric field). However, internal chemical polarization approaches are less studied due to difficulties related to controlling the charge-separation orientation in the solid state. Herein, a series of D–A molecules with both a proton donor and an acceptor were designed. Water-based molecular bridges were then established in their crystal structures, which firmly and alternately connected the proton donor of one molecule and the acceptor of another via an intermolecular H-bond network. In this way, the selective dual polarization of a phenolic hydroxyl group and a pyridinyl group could be achieved, owing to the strengthening of the charge-separation orientation upon the simultaneous deprotonation and protonation of the D–A molecules. This effect led to a 3–5-fold amplification of the molecular dipole moment in the crystal form relative to the monomeric state. On this basis, multi-excitation and multi-emission characteristics were achieved in these charge-separated crystals, endowing them with the ability to visually detect the energy of a light source, covering a wide range of the UV-Vis spectral region. This work provides a practical chemical approach for developing intrinsically polarized systems that can exhibit stable but distinct molecular photophysical properties. In the solid state, the molecular polarization of donor–acceptor (D–A) molecules can be implemented by internal chemical polarization approaches.![]()
Collapse
Affiliation(s)
- Yi Xing
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Zhongyu Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Glib V Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University 60174 Norrköping Sweden
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Danfeng Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University Box 516 SE-751 20 Uppsala Sweden
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| |
Collapse
|
18
|
|
19
|
Xu SJ, Luo LH, Tong YH, Shen Q, Xu ZL, Wu YZ, Yang H. Organic solvent nanofiltration (OSN) membrane with polyamantadinamide active layer for reducing separation performance inconformity. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
High separation performance thin film composite and thin film nanocomposite hollow fiber membranes via interfacial polymerization for organic solvent nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119567] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Wang Z, Liang S, Kang Y, Zhao W, Xia Y, Yang J, Wang H, Zhang X. Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101450] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|