1
|
Hendeniya N, Chittick C, Hillery K, Abtahi S, Mosher C, Chang B. Revealing the Kinetic Phase Behavior of Block Copolymer Complexes Using Solvent Vapor Absorption-Desorption Isotherms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18144-18153. [PMID: 38530201 PMCID: PMC11009910 DOI: 10.1021/acsami.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Controlling the self-assembled morphologies in block copolymers heavily depends on their molecular architecture and processing conditions. Solvent vapor annealing is a versatile processive pathway to obtain highly periodic self-assemblies from high chi (χ) block copolymers (BCPs) and supramolecular BCP complexes. Despite the importance of navigating the energy landscape, controlled solvent vapor annealing (SVA) has not been investigated in BCP complexes, partly due to its intricate multicomponent nature. We introduce characteristic absorption-desorption solvent vapor isotherms as an effective way to understand swelling behavior and follow the morphological evolution of the polystyrene-block-poly(4-vinylpyridine) block copolymer complexed with pentadecylphenol (PS-b-P4VP(PDP)). Using the sorption isotherms, we identify the glass transition points, polymer-solvent interaction parameters, and bulk modulus. These parameters indicate that complexation completely screens the polymer interchain interactions. Furthermore, we established that the sorption isotherm of the homopolymer blocks serves to deconvolute the intricacy of BCP complexes. We applied our findings by developing annealing pathways for grain coarsening while preventing macroscopic film dewetting under SVA. Here, grain coarsening obeyed a power law and the growth exponent revealed a kinetic transition point for rapid self-assembly. Overall, SVA-based sorption isotherms have emerged as a critical method for understanding and developing annealing pathways for BCP complexes.
Collapse
Affiliation(s)
- Nayanathara Hendeniya
- Department
of Materials Science and Engineering, Iowa
State University, Ames, Iowa 50011, United States
| | - Caden Chittick
- Department
of Materials Science and Engineering, Iowa
State University, Ames, Iowa 50011, United States
| | - Kaitlyn Hillery
- Department
of Materials Science and Engineering, Iowa
State University, Ames, Iowa 50011, United States
| | - Shaghayegh Abtahi
- Department
of Materials Science and Engineering, Iowa
State University, Ames, Iowa 50011, United States
| | - Curtis Mosher
- Roy
J. Carver High-Resolution Microscopy Facility, Office of Biotechnology, Iowa State University, Ames, Iowa 50011, United States
| | - Boyce Chang
- Department
of Materials Science and Engineering, Iowa
State University, Ames, Iowa 50011, United States
- Micro-Electronics
Research Center, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Simon A, Zhang Z, Abetz C, Abetz V, Segal-Peretz T. Atomic layer deposition enables multi-modal three-dimensional electron microscopy of isoporous membranes. NANOSCALE 2023; 15:3219-3229. [PMID: 36722895 DOI: 10.1039/d2nr05477a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Block copolymers (BCPs) are promising materials for water purification. They enable the fabrication of integral asymmetric isoporous membranes with high permeability and good selectivity. Commonly, the characterization of such hierarchical structures is performed by conventional electron microscopy (EM) means, namely scanning and transmission electron microscopy (SEM and TEM, respectively). However, due to the inherent lack of contrast between BCP domains, external contrast agents are required to achieve informative, high-resolution imaging. In addition, such EM techniques are typically limited to a certain cross-section or surface morphology only. In this paper, we harness the selective growth of AlOx in the pore-forming domains of BCPs to create an internal and stable contrast difference between the blocks. This in turn allowed us to perform advanced three-dimensional characterization of the membranes with focused ion beam (FIB)-SEM and TEM tomography, providing an understanding of the 3D structure and properties such as 3D geometry of the pores, 3D tortuosity, and 3D permeability. This 3D characterization also provides better correlations between the membrane structure and its performance. Such knowledge can allow better design and fine-tuning of BCP membranes and other membranes for their applications.
Collapse
Affiliation(s)
- Assaf Simon
- Department of Chemical Engineering, Technion, Haifa-3200003, Israel.
| | - Zhenzhen Zhang
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Str.1, 21502 Geesthacht, Germany.
| | - Clarissa Abetz
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Str.1, 21502 Geesthacht, Germany.
| | - Volker Abetz
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Str.1, 21502 Geesthacht, Germany.
- Universität Hamburg, Institute of Physical Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | | |
Collapse
|
3
|
Jiang H, Liu S. Construction of self-healing polyethersulfone ultrafiltration membrane by cucurbit[8]uril hydrogel via RTIPS method and host-guest chemistry. CHEMOSPHERE 2023; 311:137079. [PMID: 36328320 DOI: 10.1016/j.chemosphere.2022.137079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
In this work, the self-healing polyethersulfone ultrafiltration membrane constructed by host-guest chemistry between cucurbit [8]uril (CB [8] is a family of macrocyclic compounds comprising 8 glycoluril units) and two guest molecules based on reverse thermally induced phase separation (RTIPS) method was developed, which had excellent self-healing performance, better mechanical properties, and high permeation flux and BSA rejection rate. The membrane autonomously restored it BSA rejection rate up to about 89% from rejection rate levels as low as 21% after damage. The observed self-healing performance were attributed to the swelling of pore-filled CB [8] hydrogel into the damage position, the molecular interdiffusion of the hydrogel chains, the strong hydrogen bond of the hydrogel chains and the host-guest interaction between CB [8] and two guest molecules (HEC-Np and PVA-MV). SEM morphologies illustrated that the prepared pore-filled membrane via the RTIPS method had homogeneous and porous skin surface and sponge-like cross-section, which imparted the prepared membranes with improved permeability and better mechanical properties. Properties of MR-CB [8] membranes, which varied with increased content of CB [8], were evaluated by permeability, water contact angle, thermogravimetric analysis (TGA), mechanical properties, FRR, scanning electron microscope (SEM) and atomic force microscopy (AFM). The contact angle water showed that CB [8] hydrogel enhanced the surface hydrophilicity of the prepared membrane. TGA illustrated that the thermal stability improved with the increased content of CB [8]. The optimal pore-filled CB [8] hydrogel membrane (MR-CB [8]2) exhibited that the pure water flux reached 2100.5 L/m2 h, while the BSA rejection rate remained at 86.0%. The results of this work suggested pore-filled CB [8] hydrogel membrane was a more promising way to develop polyethersulfone ultrafiltration membranes with self-healing performance.
Collapse
Affiliation(s)
- Haotian Jiang
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Shenghui Liu
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| |
Collapse
|
4
|
Double stimuli-responsive isoporous block copolymer membranes upon phase separation strategies. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Ghasemi SM, Kholghi A, Azizhemati N. A physicochemical study on dry-cast porous poly (styrene-co-acrylonitrile) film. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
6
|
Improving the permselectivity of asymmetric isoporous membranes by blending the micro-sized metal-organic frameworks(MOFs) crystals with block copolymer. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Ma S, Hou Y, Hao J, Lin C, Zhao J, Sui X. Well-Defined Nanostructures by Block Copolymers and Mass Transport Applications in Energy Conversion. Polymers (Basel) 2022; 14:polym14214568. [PMID: 36365562 PMCID: PMC9655174 DOI: 10.3390/polym14214568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/27/2022] Open
Abstract
With the speedy progress in the research of nanomaterials, self-assembly technology has captured the high-profile interest of researchers because of its simplicity and ease of spontaneous formation of a stable ordered aggregation system. The self-assembly of block copolymers can be precisely regulated at the nanoscale to overcome the physical limits of conventional processing techniques. This bottom-up assembly strategy is simple, easy to control, and associated with high density and high order, which is of great significance for mass transportation through membrane materials. In this review, to investigate the regulation of block copolymer self-assembly structures, we systematically explored the factors that affect the self-assembly nanostructure. After discussing the formation of nanostructures of diverse block copolymers, this review highlights block copolymer-based mass transport membranes, which play the role of “energy enhancers” in concentration cells, fuel cells, and rechargeable batteries. We firmly believe that the introduction of block copolymers can facilitate the novel energy conversion to an entirely new plateau, and the research can inform a new generation of block copolymers for more promotion and improvement in new energy applications.
Collapse
|
8
|
He G, Li M, Li X, Wang Q, Xie Z, Xue Y, Wang K, Yu J, Sun G, Yu H, Qiu X. Isoporous membrane from PS-b-PAA/MWCNT-Ag composite with high photothermal conversion efficiency. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Soyekwo F, Liu C, Hu Y. Crosslinked copolystyrenes based membranes bearing alkylcarboxylated and alkylsulfonated side chains for organic solvent nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|