1
|
Behera SK, Karthika S, Mahanty B, Meher SK, Zafar M, Baskaran D, Rajamanickam R, Das R, Pakshirajan K, Bilyaminu AM, Rene ER. Application of artificial intelligence tools in wastewater and waste gas treatment systems: Recent advances and prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122386. [PMID: 39260284 DOI: 10.1016/j.jenvman.2024.122386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
The non-linear complex relationships among the process variables in wastewater and waste gas treatment systems possess a significant challenge for real-time systems modelling. Data driven artificial intelligence (AI) tools are increasingly being adopted to predict the process performance, cost-effective process monitoring, and the control of different waste treatment systems, including those involving resource recovery. This review presents an in-depth analysis of the applications of emerging AI tools in physico-chemical and biological processes for the treatment of air pollutants, water and wastewater, and resource recovery processes. Additionally, the successful implementation of AI-controlled wastewater and waste gas treatment systems, along with real-time monitoring at the industrial scale are discussed.
Collapse
Affiliation(s)
- Shishir Kumar Behera
- Process Simulation Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India.
| | - S Karthika
- Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, 600 025, Tamil Nadu, India
| | - Biswanath Mahanty
- Division of Biotechnology, Karunya Institute of Technology & Sciences, Coimbatore, 641 114, Tamil Nadu, India
| | - Saroj K Meher
- Systems Science and Informatics Unit, Indian Statistical Institute, Bangalore, 560059, India
| | - Mohd Zafar
- Department of Applied Biotechnology, College of Applied Sciences & Pharmacy, University of Technology and Applied Sciences - Sur, P.O. Box: 484, Zip Code: 411, Sur, Oman
| | - Divya Baskaran
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam, 59626, South Korea; Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, Tamil Nadu, India
| | - Ravi Rajamanickam
- Department of Chemical Engineering, Annamalai University, Chidambaram, 608002, Tamil Nadu, India
| | - Raja Das
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781 039, Assam, India
| | - Abubakar M Bilyaminu
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, P. O. Box 3015, 2601, DA Delft, the Netherlands
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, P. O. Box 3015, 2601, DA Delft, the Netherlands
| |
Collapse
|
2
|
Liu L, Wang Y, Liu Y, Wang J, Zheng C, Zuo W, Tian Y, Zhang J. Insight into key interactions between diverse factors and membrane fouling mitigation in anaerobic membrane bioreactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123750. [PMID: 38467364 DOI: 10.1016/j.envpol.2024.123750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Anaerobic membrane bioreactors (AnMBRs) have garnered considerable attention as a low-energy and low-carbon footprint treatment technology. With an increasing number of scholars focusing on AnMBR research, its outstanding performance in the field of water treatment has gradually become evident. However, the primary obstacle to the widespread application of AnMBR technology lies in membrane fouling, which leads to reduced membrane flux and increased energy demand. To ensure the efficient and long-term operation of AnMBRs, effective control of membrane fouling is imperative. Nevertheless, the interactions between various fouling factors are complex, making it challenging to predict the changes in membrane fouling. Therefore, a comprehensive analysis of the fouling factors in AnMBRs is necessary to establish a theoretical basis for subsequent membrane fouling control in AnMBR applications. This review aims to provide a thorough analysis of membrane fouling issues in AnMBR applications, particularly focusing on fouling factors and fouling control. By delving into the mechanisms behind membrane fouling in AnMBRs, this review offers valuable insights into mitigating membrane fouling, thus enhancing the lifespan of membrane components in AnMBRs and identifying potential directions for future AnMBR research.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yihe Wang
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yongxiao Liu
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinghui Wang
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, China
| | - Chengzhi Zheng
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
3
|
Sun X, Duan L, Liu Z, Gao Q, Liu J, Zhang D. Mitigation of reverse osmosis membrane fouling by coagulation pretreatment to remove silica and transparent exopolymer particles. ENVIRONMENTAL RESEARCH 2024; 241:117569. [PMID: 37925125 DOI: 10.1016/j.envres.2023.117569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023]
Abstract
The dissolution of silica and transparent exopolymer particles (TEP) can deposit on the membrane surface and cause serious membrane fouling in reverse osmosis (RO) technology. Coagulation, as a common pretreatment process for RO, can effectively intercept pollutants and alleviate membrane fouling. In this study, FeCl3 and AlCl3 coagulants and polyacrylamide (PAM) flocculants were used to explore the optimal coagulation conditions to reduce the concentration of silica and TEP in the RO process. The results showed that the two coagulants had the best removal effect on pollutants when the pH was 7 and the dosage was 50 mg/L. Considering the proportion of reversible fouling after coagulation, the removal rate of pollutants, and the residual amount of coagulation metal ions, the best PAM dosage was 5 mg/L for FeCl3 and 1 mg/L for AlCl3. After coagulation pretreatment, the Zeta potential decreased, and the particle size distribution increased, making pollutants tend to aggregate, thus effectively removing foulants. The removal mechanisms of pollutants by coagulation pretreatment were determined to be adsorption, electric neutralization and co-precipitation. This study determined the best removal conditions of silica and TEP by coagulation and explored the removal mechanism.
Collapse
Affiliation(s)
- Xiaochen Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Resources & Environment, Nanchang University, Nanchang, 330031, China; Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Qingdao, 266000, China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhenzhong Liu
- School of Resources & Environment, Nanchang University, Nanchang, 330031, China; Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Qingdao, 266000, China.
| | - Qiusheng Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Jianing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Dahai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Qingdao, 266000, China
| |
Collapse
|
4
|
Wu Q, Chen C, Zhang Y, Tang P, Ren X, Shu J, Liu X, Cheng X, Tiraferri A, Liu B. Safe purification of rural drinking water by biological aerated filter coupled with ultrafiltration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161632. [PMID: 36657675 DOI: 10.1016/j.scitotenv.2023.161632] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Water resources of many rural areas are usually lakes or reservoirs, which can be easily affected by run-off, non-point source pollution and are often of poorer quality compared with urban water sources. Drinking water supply in remote rural areas usually suffers from various challenges, such as the high cost of construction and maintenance of centralized drinking water treatment plants and pipe networks, due to the dispersed nature of villages, which are often located in varied and complex topographies. In this study, a combined process comprising biological aerated filter (BAF) combined with ultrafiltration was developed to treat polluted reservoir water. Organic matter indexes, turbidity, and chroma were used as indicators for the evaluation of the system performance. In a long-term experiment lasting 260 days, the combined process was tested under different values of critical operational parameters, including filler types and empty bed contact time (EBCT). Furthermore, the microbial communities in different BAF reactors were carefully evaluated at different times, finding that microorganisms with specific functions were enriched in the various BAF reactors. The combined process reached 85.5 % removal rate of DOC with an EBCT of 45 min and using granule active carbon (GAC) as filler. Most of the effluents of BAF reactors met the requirements for drinking water in China. The combined system showed practical potential for polluted water treatment in some rural areas.
Collapse
Affiliation(s)
- Qidong Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Chen Chen
- Litree Purifying Technology Co., Ltd., Haikou, Hainan 571126, PR China
| | - Yongli Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China
| | - Peng Tang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Xiaoyu Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Jingyu Shu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Xinyu Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Xin Cheng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Baicang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China.
| |
Collapse
|
5
|
Ma B, Ulbricht M, Hu C, Fan H, Wang X, Pan YR, Hosseini SS, Panglisch S, Van der Bruggen B, Wang Z. Membrane Life Cycle Management: An Exciting Opportunity for Advancing the Sustainability Features of Membrane Separations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3013-3020. [PMID: 36786864 DOI: 10.1021/acs.est.2c09257] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Membrane science and technology is growing rapidly worldwide and continues to play an increasingly important role in diverse fields by offering high separation efficiency with low energy consumption. Membranes have also shown great promise for "green" separation. A majority of the investigations in the field are devoted to the membrane fabrication and modification with the ultimate goals of enhancing the properties and separation performance of membranes. However, less attention has been paid to membrane life cycle management, particularly at the end of service. This is becoming very important, especially taking into account the trends toward sustainable development and carbon neutrality. On the contrary, this can be a great opportunity considering the large variety of membrane processes, especially in terms of the size and capacity of plants in operation. This work aims to highlight the prominent aspects that govern membrane life cycle management with special attention to life cycle assessment (LCA). While fabrication, application, and recycling are the three key aspects of LCA, we focus here on membrane (module) recycling at the end of life by elucidating the relevant aspects, potential criteria, and strategies that effectively contribute to the achievement of green development and sustainability goals.
Collapse
Affiliation(s)
- Baiwen Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongwei Fan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yi-Rong Pan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Seyed Saeid Hosseini
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Stefan Panglisch
- Chair for Mechanical Process Engineering/Water Technology, University of Duisburg-Essen, Duisburg 47057, Germany
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
6
|
Chen M, Shen S, Zhang F, Zhang C, Xiong J. Biodegradable Dissolved Organic Carbon (BDOC) Removal from Micro-Polluted Water Source Using Ultrafiltration: Comparison with Conventional Processes, Operation Conditions and Membrane Fouling Control. Polymers (Basel) 2022; 14:4689. [PMID: 36365681 PMCID: PMC9658970 DOI: 10.3390/polym14214689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
The biodegradable dissolved organic carbon (BDOC) in micro-polluted water sources affects the drinking water quality and safety in the urban water supply. The conventional technology of “coagulation-sedimentation-filtration” in a water plant located in the lower reaches of the Yangtze River removed dissolved organic carbon (DOC) with a molecular weight (MW) > 30 kDa effectively, but the BDOC elimination only ranged 27.4−58.1%, due to their predominant smaller MW (<1 kDa), leading to a high residual BDOC of 0.22−0.33 mg/L. To ensure the biological stability of drinking water, i.e., the inability to support microbial growth (BDOC < 0.2 mg/L), a pilot-scale ultrafiltration process (UF, made of aromatic polyamide with MW cut-off of 1 kDa) was operated to remove BDOC as an advanced treatment after sand-filtration. Results showed the membrane flux decreased with the increase in the influent BDOC concentration and decrease in operating pressure. With an operating pressure of 0.25 MPa, the BDOC removal by UF reached 80.7%, leading to a biologically stable BDOC concentration of 0.08 mg/L. The fouling of the membrane was mainly caused by organic pollution. The H2O2−HCl immersion washing method effectively cleaned the membrane surface fouling, with a recovery of membrane flux of 98%.
Collapse
Affiliation(s)
- Ming Chen
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Shuhuai Shen
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Fan Zhang
- Huzhou Ecological Environment Bureau, Changxing Branch, Huzhou 313100, China
| | - Cong Zhang
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Jianglei Xiong
- China Electronics System Engineering No.2 Construction Co., Ltd., Wuxi 214115, China
| |
Collapse
|
7
|
Liu N, Yang J, Hu X, Zhao H, Chang H, Liang Y, Pang L, Meng Y, Liang H. Fouling and chemically enhanced backwashing performance of low-pressure membranes during the treatment of shale gas produced water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156664. [PMID: 35700787 DOI: 10.1016/j.scitotenv.2022.156664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The treatment of shale gas produced water (SGPW) for beneficial reuse is currently the most dominant and economical option. Membrane filtration is one preferred method to deal with SGPW, but membrane fouling is an unavoidable problem. In this study, two types of ultrafiltration (UF) membranes and one type of microfiltration (MF) membrane were investigated to treat SGPW from Sichuan basin. Results showed that increased total dissolved solid (31-40 g/L) and UV254 (10-42.9 m-1) were observed for the same shale gas plays, and the primary fluorescent organic substances were humic acid-like components. Compared to UF membranes with the flux decline by 2% to 60%, MF membranes with larger pore size were more likely to be fouled with the flux decline by 43% to 95%. Cake layer filtration was verified to be the primary membrane fouling mechanism. Statistical analysis showed that UV254 played the most significant role in membrane fouling which had the highest correlation (0.76 to 0.93). Compared to permeate backwashing (13%), deionized water backwashing and chemically enhanced backwashing (CEB) using NaClO, H2O2 and citric acid improved the cleaning efficiencies (31%-95%). CEB using NaOH prepared by deionized water aggravated membrane fouling, while excellent cleaning efficiencies (39%-79%) were observed for CEB using NaOH prepared by permeate. The difference in cleaning behaviors for fouled membranes by SGPW was verified by morphology observation and element composition analysis.
Collapse
Affiliation(s)
- Naiming Liu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Jie Yang
- Safety, Environment, and Technology Supervision Research Institute of Petrochina Southwest Oil & Gasfield Company, Chengdu, China
| | - Xueqi Hu
- State Grid Sichuan Comprehensive Energy Service Co., Ltd., Power Engineering Br., Chengdu 610072, China
| | - Huaxin Zhao
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China.
| | - Ying Liang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Lina Pang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Yuchuan Meng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Chang H, Yu H, Li X, Zhou Z, Liang H, Song W, Ji H, Liang Y, Vidic RD. Role of biological granular activated carbon in contaminant removal and ultrafiltration membrane performance in a full-scale system. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Meng S, Wang R, Meng X, Wang Y, Fan W, Liang D, Zhang M, Liao Y, Tang C. Reaction heterogeneity in the bridging effect of divalent cations on polysaccharide fouling. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119933] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Wu L, Liu Y, Hu J, Feng X, Ma C, Wen C. Preparation of polyvinylidene fluoride composite ultrafiltration membrane for micro-polluted surface water treatment. CHEMOSPHERE 2021; 284:131294. [PMID: 34186221 DOI: 10.1016/j.chemosphere.2021.131294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Blending modification of graphene oxide (GO) and deposition of silver carbonate (Ag2CO3) on the membrane surface by suction filtration was used to prepare polyvinylidene fluoride (PVDF) composite ultrafiltration (UF) membranes (denoted as PGA membranes). The effect of this strategy on the morphology and performance of the pure PVDF membrane was investigated. Owing to an increased hydrophilicity and the formation of a more open pore, the pollution resistance and permeability of the PGA membrane were improved. The pure water flux of the PGA-3 membrane (254 LMH) was increased to more than 2-fold compared to that of the neat PVDF membrane (126 LMH). In addition, the results of antifouling experiments showed that the flux recovery rate, flux decay rate, and antibacterial performance of the PGA-3 membrane was superior to those of the other membranes synthesized in this study. Finally, after conducting multi-cycle filtration experiments with lake water, the flux and recovery rate of the PGA-3 membrane was observed to be the highest, and the water quality of the lake water filtered by the PGA-3 membrane was the best. Thus, the above results indicate that this membrane modification strategy is extraordinarily effective in improving the antifouling properties and permeability of the PVDF UF membranes in practical applications.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130000, China
| | - Ying Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Jian Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xueting Feng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Tianjin Haiyuanhui Technology Co., Ltd., Tianjin, 300457, China.
| | - Chen Wen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|