1
|
Tu Y, Yang Y, Zheng Y, Guo S, Shen J. Polyvinylidene Fluoride Based Piezoelectric Composites with Strong Interfacial Adhesion via Click Chemistry for Self-Powered Flexible Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309758. [PMID: 38326102 DOI: 10.1002/smll.202309758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/20/2024] [Indexed: 02/09/2024]
Abstract
Achieving relatively uniform dispersion in organic-inorganic composites with overwhelming differences in surface energy is a perennial challenge. Herein, novel eliminated polyvinylidene fluoride (EPVDF)/EPVDF functionalized barium titanate nanoparticles (EPVDF@BT) flexible piezoelectric nanogenerators (PENGs) with strong interfacial adhesion are developed via thermal stretching following sequential click chemistry. Thanks to the strong interfacial adhesion, the optimal PENGs containing ultra-high β-phase content (97.2%) exhibit not only optimized mechanical and dielectric behaviors but also excellent piezoelectric properties with high piezoelectric output (V = 10.7 V, I = 216 nA), reliable durability (8000 cycles), ultrafast response time (20 ms), and good sensitivity (2.09 nA kPa-1), far outperforming most reported PVDF-based composites. Furthermore, COMSOL finite element simulations (FEM) confirm that the elevated stress transfer efficiency induced by the strong interfacial adhesion is the main driving force for enhanced piezoelectric performances. For practical applications, self-powered PENGs can simply but stably capture mechanical energy, drive tiny electronic devices, and serve as potential multifunctional and durable sensors for detecting human physiological motions. This work opens a pioneering avenue to break the trade-offs between piezoelectric and other properties, which is of great importance for developing self-powered flexible sensors.
Collapse
Affiliation(s)
- Youlei Tu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Chengdu, 610065, China
| | - Yuliang Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Chengdu, 610065, China
| | - Yu Zheng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Chengdu, 610065, China
| | - Shaoyun Guo
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Chengdu, 610065, China
| | - Jiabin Shen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Chengdu, 610065, China
| |
Collapse
|
2
|
Roy Barman S, Gavit P, Chowdhury S, Chatterjee K, Nain A. 3D-Printed Materials for Wastewater Treatment. JACS AU 2023; 3:2930-2947. [PMID: 38034974 PMCID: PMC10685417 DOI: 10.1021/jacsau.3c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023]
Abstract
The increasing levels of water pollution pose an imminent threat to human health and the environment. Current modalities of wastewater treatment necessitate expensive instrumentation and generate large amounts of waste, thus failing to provide ecofriendly and sustainable solutions for water purification. Over the years, novel additive manufacturing technology, also known as three-dimensional (3D) printing, has propelled remarkable innovation in different disciplines owing to its capability to fabricate customized geometric objects rapidly and cost-effectively with minimal byproducts and hence undoubtedly emerged as a promising alternative for wastewater treatment. Especially in membrane technology, 3D printing enables the designing of ultrathin membranes and membrane modules layer-by-layer with different morphologies, complex hierarchical structures, and a wide variety of materials otherwise unmet using conventional fabrication strategies. Extensive research has been dedicated to preparing membrane spacers with excellent surface properties, potentially improving the membrane filtration performance for water remediation. The revolutionary developments in membrane module fabrication have driven the utilization of 3D printing approaches toward manufacturing advanced membrane components, including biocarriers, sorbents, catalysts, and even whole membranes. This perspective highlights recent advances and essential outcomes in 3D printing technologies for wastewater treatment. First, different 3D printing techniques, such as material extrusion, selective laser sintering (SLS), and vat photopolymerization, emphasizing membrane fabrication, are briefly discussed. Importantly, in this Perspective, we focus on the unique 3D-printed membrane modules, namely, feed spacers, biocarriers, sorbents, and so on. The unparalleled advantages of 3D printed membrane components in surface area, geometry, and thickness and their influence on antifouling, removal efficiency, and overall membrane performance are underlined. Moreover, the salient applications of 3D printing technologies for water desalination, oil-water separation, heavy metal and organic pollutant removal, and nuclear decontamination are also outlined. This Perspective summarizes the recent works, current limitations, and future outlook of 3D-printed membrane technologies for wastewater treatment.
Collapse
Affiliation(s)
- Snigdha Roy Barman
- Department
of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Pratik Gavit
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore, Karnataka 560012, India
| | - Saswat Chowdhury
- Department
of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Kaushik Chatterjee
- Department
of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore, Karnataka 560012, India
| | - Amit Nain
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
3
|
Pramono E, Umam K, Sagita F, Saputra OA, Alfiansyah R, Setyawati Dewi RS, Kadja GT, Ledyastuti M, Wahyuningrum D, Radiman CL. The enhancement of dye filtration performance and antifouling properties in amino-functionalized bentonite/polyvinylidene fluoride mixed matrix membranes. Heliyon 2023; 9:e12823. [PMID: 36685376 PMCID: PMC9852663 DOI: 10.1016/j.heliyon.2023.e12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Trade-off issue and membrane fouling remain two major issues in the utilization of membrane technology for the water treatment due to reduced membrane permeability and lifetime. In our study, we employed 3-aminopropyltriethoxysilane modified bentonite (BNTAPS) as an anti-fouling modifier to prepare polyvinylidene fluoride (PVDF)-based membranes via the phase inversion method. The effects of BNTAPS concentration on the physical, mechanical, morphological, and filtration performance of the hybrid membranes have been investigated. It was found that the addition of BNTAPS improved the hydrophilicity of the membrane revealed by the decreased water contact angle. Consequently, the pure water flux of PVDF membrane containing 0.5% BNTAPS (PVDF/BNTAPS0.5%) increased to 35.5 L m-2 h-1. Moreover, the PVDF/BNTAPS membrane showed a smaller pore diameter and porosity compared to pristine PVDF. The membrane performance evaluation was carried out using cationic and anionic dyes, i.e., methylene blue (MB) and acid yellow (AY17), respectively. Our study revealed that the rejection of each dye was slightly increased for the PVDF/BNTAPS0.5%. However, the flux recovery rate of the PVDF/BNTAPS membrane significantly improved, which directly prolonged the membrane lifetime.
Collapse
Affiliation(s)
- Edi Pramono
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia,Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami no. 36A, Surakarta, 57216, Indonesia
| | - Khairul Umam
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia,Textile Chemistry Division, Politeknik STTT Bandung, Jl. Jakarta no. 31, Bandung, 40272, Indonesia
| | - Fuja Sagita
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Ozi Adi Saputra
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami no. 36A, Surakarta, 57216, Indonesia
| | - Rifki Alfiansyah
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Rahmi Sri Setyawati Dewi
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Grandprix T.M. Kadja
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia,Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia,Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Mia Ledyastuti
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Deana Wahyuningrum
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Cynthia L. Radiman
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia,Corresponding author. Jl. Ganesha 10, Bandung, 40132, Indonesia.
| |
Collapse
|