1
|
Li L, Liu B, Li Z. Metal-organic framework-based membranes for ion separation/selection from salt lake brines and seawater. NANOSCALE 2024; 16:19543-19563. [PMID: 39360896 DOI: 10.1039/d4nr02454k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Nanofiltration (NF) technologies have evolved into a stage ready for industrial commercialization. NF membranes with unique separation characteristics are widely used for ion selection in water environments. Although many materials have been synthesized and functionalized for specific ion separation, the permeability-selectivity trade-off is still a major challenge. Metal-organic frameworks (MOFs), as a class of promising materials to meet industrial demands, are gaining increasing attention. Many experimental and theoretical studies have been conducted on the applications of MOF-based membranes in ion selection. This review focuses on MOF-based NF membranes for ion separation/selection from seawater and salt lake brines, including their applications in industry. First, a brief discussion on the development of membrane technology for ion selection is given, with the principles of ion separation via NF membranes, industrial implementations, and technical difficulties being discussed. Next, the benefits and challenges of using MOF membranes in NF processes are elaborated, including the basic properties of MOFs, approaches to fabricate MOF membranes for efficient ion selection and challenges in constructing industrially viable membranes. Finally, state-of-the-art studies on key characteristics of MOFs for NF membrane fabrication are presented. It indicates that the utilization of MOF-based membranes has significant potential to improve ion separation performance. However, the lack of sufficient data under industrial conditions highlights the need for further development in this area.
Collapse
Affiliation(s)
- Lirong Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- School of Electrical, Energy and Power Engineering, YangZhou University, Yangzhou, Jiangsu 225127, China
| | - Biyuan Liu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Zhigang Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
2
|
Hundessa NK, Hu CC, Kang DY, Ajebe EG, Habet BA, Hung WS, Lee KR, Lai JY. A novel trimesoyl chloride/hyper branched polyethyleneimine/MOF (MIL-303)/P84 co-polyimide nanocomposite mixed matrix membranes with an ultra-thin surface cross linking layer for removing toxic heavy metal ions from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136221. [PMID: 39442308 DOI: 10.1016/j.jhazmat.2024.136221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
In this study, a positively charged nanofiltration (NF) nanocomposite mixed matrix membrane (MMM) was developed by incorporating metal-organic frameworks (MOFs) (MIL-303) into P84 co-polyimide and cross-linking with hyperbranched polyethyleneimine (HPEI). A very thin selective layer was subsequently formed on the cross-linked membrane surface using trimesoyl chloride (TMC). The incorporation of MIL-303 introduced specific water channels, enhancing the permeance of the nanocomposite MMMs. Additionally, it improved hydrophilicity and influenced the diffusion of the TMC monomer through the channels. The cross-linker HPEI resulted in NF membranes with increased electro-positivity and a reduced mean pore diameter. The very thin crosslinked TMC layer further improved permeance and heavy metal ions rejection of the membrane. This optimized membrane exhibited excellent rejection for both bivalent and monovalent ions, as well as heavy metal ions, effectively overcoming the common trade-off between permeance and rejection in NF membranes. The membrane demonstrated a remarkable permeance of 13.0 LMH/bar, coupled with exceptional rejection for heavy metal ions (96.8 % for Zn²⁺, 95.2 % for Ni²⁺, 95.7 % for Cu²⁺, 93.2 % for Pb²⁺, and 92.9 % for Cd²⁺). The TMC/HPEI/MIL-303/P84 system presented in this study holds significant promise for customizing high-performance positively charged NF membranes for the removal of heavy metal ions from wastewater.
Collapse
Affiliation(s)
- Netsanet Kebede Hundessa
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chien-Chieh Hu
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; R&D Center for Membrane Technology, Chung Yuan University, Chung-Li 32023, Taiwan.
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.
| | - Eyasu Gebrie Ajebe
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Biadglign Ayalneh Habet
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wei-Song Hung
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; R&D Center for Membrane Technology, Chung Yuan University, Chung-Li 32023, Taiwan
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology, Chung Yuan University, Chung-Li 32023, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; R&D Center for Membrane Technology, Chung Yuan University, Chung-Li 32023, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 32003, Taiwan
| |
Collapse
|
3
|
Jia Y, Huo X, Gao L, Shao W, Chang N. Controllable Design of Polyamide Composite Membrane Separation Layer Structures via Metal-Organic Frameworks: A Review. MEMBRANES 2024; 14:201. [PMID: 39330542 PMCID: PMC11433959 DOI: 10.3390/membranes14090201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Optimizing the structure of the polyamide (PA) layer to improve the separation performance of PA thin-film composite (TFC) membranes has always been a hot topic in the field of membrane preparation. As novel crystalline materials with high porosity, multi-functional groups, and good compatibility with membrane substrate, metal-organic frameworks (MOFs) have been introduced in the past decade for the modification of the PA structure in order to break through the separation trade-off between permeability and selectivity. This review begins by summarizing the recent progress in the control of MOF-based thin-film nanocomposite (TFN) membrane structures. The review also covers different strategies used for preparing TFN membranes. Additionally, it discusses the mechanisms behind how these strategies regulate the structure and properties of PA. Finally, the design of a competent MOF material that is suitable to reach the requirements for the fabrication of TFN membranes is also discussed. The aim of this paper is to provide key insights into the precise control of TFN-PA structures based on MOFs.
Collapse
Affiliation(s)
- Yanjun Jia
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaowen Huo
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Lu Gao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Shao
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Na Chang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
4
|
Vatanpour V, Naziri Mehrabani SA, Dehqan A, Arefi-Oskoui S, Orooji Y, Khataee A, Koyuncu I. Performance improvement of polyethersulfone membranes with Ti 3AlCN MAX phase in the treatment of organic and inorganic pollutants. CHEMOSPHERE 2024; 362:142583. [PMID: 38866342 DOI: 10.1016/j.chemosphere.2024.142583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
In this work, the hydrophobic polyethersulfone (PES) membrane was modified by incorporating Ti3AlCN MAX phase. Synthesis of Ti3AlCN MAX phase was performed using the reactive sintering method. The scanning electron microscopy (SEM) images showed a 3D compressed layered morphology for the synthesized MAX phase. The Ti3AlCN MAX phase was added to the casting solution, and the mixed-matrix membranes were fabricated by the non-solvent induced phase inversion method. The performance and antifouling features of bare and modified membranes were explored by pure water flux, flux recovery ratio (FRR), and fouling resistance parameters. Through the modification of membranes by introducing the Ti3AlCN MAX phase, the enhancement of these features was observed, in which the membrane containing 1 wt% of MAX phase showed 17.7 L/m2.h.bar of permeability and 98.6% for FRR. Also, the separation efficiency of all membranes was evaluated by rejecting organic and inorganic pollutants. The Ti3AlCN MAX membranes could reject 96%, 95%, and 88% of reactive blue 50, Rose Bengal, and azithromycin antibiotics, respectively, as well as 98%, 80%, 86%, and 36% of Pb2+, As5+, Na2SO4, and NaCl, respectively. Finally, the outcomes indicated the Ti3AlCN MAX phase was an excellent and efficient novel additive for modifying the PES membrane.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, 15719-14911, Iran; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey.
| | - Seyed Ali Naziri Mehrabani
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey; Nano Science and Nano Engineering Department, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Ahmad Dehqan
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, 15719-14911, Iran
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Chemical Engineering & ITU Synthetic Fuels and Chemicals Technology Center (ITU-SENTEK), Istanbul Technical University, Istanbul 34469, Turkey
| | - Ismail Koyuncu
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey.
| |
Collapse
|
5
|
Wiegerinck HT, Demirel ÖH, Zwijnenberg HJ, van der Meer T, Rijnaarts T, Wood JA, Benes NE. Controlled Localized Metal-Organic Framework Synthesis on Anion Exchange Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31703-31708. [PMID: 38858131 PMCID: PMC11194767 DOI: 10.1021/acsami.4c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Metal-organic framework (MOF) films can be used in various applications. In this work, we propose a method that can be used to synthesize MOF films localized on a single side of an anion exchange membrane, preventing the transport of the metal precursor via Donnan exclusion. This is advantageous compared to the related contra-diffusion method that results in the growth of a MOF film on both sides of the support, differing in quality on both sides. Our proposed method has the advantage that the synthesis conditions can potentially be tuned to create the optimal conditions for crystal growth on a single side. The localized growth of the MOF is governed by Donnan exclusion of the anion exchange membrane, preventing metal ions from passing to the other compartment, and this leads to a local control of the precursor stoichiometry. In this work, we show that our method can localize the growth of both Cu-BTC and ZIF-8 in water and in methanol, respectively, highlighting that this method can used for preparing a variety of MOF films with varying characteristics using soluble precursors at room temperature.
Collapse
Affiliation(s)
| | | | - Harmen J. Zwijnenberg
- Membrane Science and Technology Cluster,
MESA+ Institute for Nanotechnology, University
of Twente, 7500AE Enschede, The Netherlands
| | - Tom van der Meer
- Membrane Science and Technology Cluster,
MESA+ Institute for Nanotechnology, University
of Twente, 7500AE Enschede, The Netherlands
| | - Timon Rijnaarts
- Membrane Science and Technology Cluster,
MESA+ Institute for Nanotechnology, University
of Twente, 7500AE Enschede, The Netherlands
| | - Jeffery A. Wood
- Membrane Science and Technology Cluster,
MESA+ Institute for Nanotechnology, University
of Twente, 7500AE Enschede, The Netherlands
| | - Nieck E. Benes
- Membrane Science and Technology Cluster,
MESA+ Institute for Nanotechnology, University
of Twente, 7500AE Enschede, The Netherlands
| |
Collapse
|
6
|
Shashikumar U, Joshi S, Srivastava A, Tsai PC, Shree KDS, Suresh M, Ravindran B, Hussain CM, Chawla S, Ke LY, Ponnusamy VK. Trajectory in biological metal-organic frameworks: Biosensing and sustainable strategies-perspectives and challenges. Int J Biol Macromol 2023; 253:127120. [PMID: 37820902 DOI: 10.1016/j.ijbiomac.2023.127120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
The ligand attribute of biomolecules to form coordination bonds with metal ions led to the discovery of a novel class of materials called biomolecule-associated metal-organic frameworks (Bio-MOFs). These biomolecules coordinate in multiple ways and provide versatile applications. Far-spread bio-ligands include nucleobases, amino acids, peptides, cyclodextrins, saccharides, porphyrins/metalloporphyrin, proteins, etc. Low-toxicity, self-assembly, stability, designable and selectable porous size, the existence of rigid and flexible forms, bio-compatibility, and synergistic interactions between metal ions have led Bio-MOFs to be commercialized in industries such as sensors, food, pharma, and eco-sensing. The rapid growth and commercialization are stunted by absolute bio-compatibility issues, bulk morphology that makes it rigid to alter shape/porosity, longer reaction times, and inadequate research. This review elucidates the structural vitality, biocompatibility issues, and vital sensing applications, including challenges for incorporating bio-ligands into MOF. Critical innovations in Bio-MOFs' applicative spectrum, including sustainable food packaging, biosensing, insulin and phosphoprotein detection, gas sensing, CO2 capture, pesticide carriers, toxicant adsorptions, etc., have been elucidated. Emphasis is placed on biosensing and biomedical applications with biomimetic catalysis and sensitive sensor designing.
Collapse
Affiliation(s)
- Uday Shashikumar
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Somi Joshi
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Kandkuri Dhana Sai Shree
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Meera Suresh
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Shashi Chawla
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India.
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan.; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung City 804, Taiwan.
| |
Collapse
|
7
|
Qiu Z, Chen J, Zeng J, Dai R, Wang Z. A review on artificial water channels incorporated polyamide membranes for water purification: Transport mechanisms and performance. WATER RESEARCH 2023; 247:120774. [PMID: 37898000 DOI: 10.1016/j.watres.2023.120774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
While thin-film composite (TFC) polyamide (PA) membranes are advanced for removing salts and trace organic contaminants (TrOCs) from water, TFC PA membranes encounter a water permeance-selectivity trade-off due to PA layer structural characteristics. Drawing inspiration from the excellent water permeance and solute rejection of natural biological channels, the development of analogous artificial water channels (AWCs) in TFC PA membranes (abbreviated as AWCM) promises to achieve superior mass transfer efficiency, enabling breaking the upper bound of water permeance and selectivity. Herein, we first discussed the types and structural characteristics of AWCs, followed by summarizing the methods for constructing AWCM. We discussed whether the AWCs acted as the primary mass transfer channels in AWCM and emphasized the important role of the AWCs in water transport and ion/TrOCs rejection. We thoroughly summarized the molecular-level mechanisms and structure-performance relationship of water molecules, ions, and TrOCs transport in the confined nanospace of AWCs, which laid the foundation for illustrating the enhanced water permeance and salt/TrOCs selectivity of AWCM. Finally, we discussed the challenges encountered in the field of AWCM and proposed future perspectives for practical applications. This review is expected to offer guidance for understanding the transport mechanisms of AWCM and developing next-generation membrane for effective water treatment.
Collapse
Affiliation(s)
- Zhiwei Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiansuxuan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jin Zeng
- School of Software Engineering, Tongji University, Shanghai 201804, PR China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
8
|
Meng QW, Wu D, Wang S, Sun Q. Function-Led Design of Covalent-Organic-Framework Membranes for Precise Ion Separation. Chemistry 2023; 29:e202302460. [PMID: 37605607 DOI: 10.1002/chem.202302460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023]
Abstract
Insufficient access to clean water and resources has emerged as one of the most pressing issues affecting people globally. Membrane-based ion separation has become a focal point of research for the generation of fresh water and the extraction of energy elements. This Review encapsulates recent advancements in the selective ion transport of covalent organic framework (COF) membranes, accomplished by strategically pairing diverse monomers to create membranes with various pore sizes and environments for specific purposes. We first discuss the merits of using COF materials as a basis for fabricating membranes for ion separation. We then explore the development of COF membranes in areas such as desalination, acid recovery, and energy element extraction, with a particular emphasis on the fundamental principles of membrane design. Lastly, we address both theoretical and practical challenges, as well as potential opportunities in the targeted design of ion-selective membranes. The goal of this Review is to stimulate future investigative efforts in this field, which is of significant scientific and strategic importance.
Collapse
Affiliation(s)
- Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Di Wu
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| |
Collapse
|
9
|
Nguyen AG, Park CJ. Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
10
|
Salahshoori I, Asghari M, Namayandeh Jorabchi M, Wohlrab S, Rabiei M, Raji M, Afsari M. Methylene diisocyanate - aided tailoring of nanotitania for dispersion engineering through polyurethane mixed matrix membranes: experimental investigations. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
|
11
|
Designing an energy-efficient multi-stage selective electrodialysis process based on high-performance materials for lithium extraction. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
12
|
Liu Y, Xie S, Wu J, Jiang L, Liu L, Li J. Revealing the confinement effects of graphitic carbon nitride nanochannels on the water desalination performance. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
13
|
Wu LK, Xu ZL, Tong M, Li EC, Tang YJ. Dissecting the role of nanomaterials on permeation enhancement of the thin-film nanocomposite membrane: ZIF-8 as an example. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
14
|
Wu C, Xia L, Xia S, Van der Bruggen B, Zhao Y. Advanced Covalent Organic Framework-Based Membranes for Recovery of Ionic Resources. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206041. [PMID: 36446638 DOI: 10.1002/smll.202206041] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Membrane technology has shown a viable potential in conversion of liquid-waste or high-salt streams to fresh waters and resources. However, the non-adjustability pore size of traditional membranes limits the application of ion capture due to their low selectivity for target ions. Recently, covalent organic frameworks (COFs) have become a promising candidate for construction of advanced ion separation membranes for ion resource recovery due to their low density, large surface area, tunable channel structure, and tailored functionality. This tutorial review aims to analyze and summarize the progress in understanding ion capture mechanisms, preparation processes, and applications of COF-based membranes. First, the design principles for target ion selectivity are illustrated in terms of theoretical simulation of ions transport in COFs, and key properties for ion selectivity of COFs and COF-based membranes. Next, the fabrication methods of diverse COF-based membranes are classified into pure COF membranes, COF continuous membranes, and COF mixed matrix membranes. Finally, current applications of COF-based membranes are highlighted: desalination, extraction, removal of toxic metal ions, radionuclides and lithium, and acid recovery. This review presents promising approaches for design, preparation, and application of COF-based membranes in ion selectivity for recovery of ionic resources.
Collapse
Affiliation(s)
- Chao Wu
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
- Department of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Lei Xia
- Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 bus 2459, Leuven, B-3001, Belgium
| | - Shengji Xia
- Department of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| | - Yan Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| |
Collapse
|
15
|
Xu T, Wu B, Li Y, Zhu Y, Sheng F, Ge L, Li X, Xu T. Insight into Ion Transport in Discrete Frameworks of Porous Organic Cage Membranes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c04160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tingting Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Bin Wu
- School of Chemistry & Chemical Engineering, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei230601, China
| | - Yifan Li
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Yanran Zhu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Fangmeng Sheng
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Liang Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Xingya Li
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
16
|
Li R, Fu X, Liu G, Li J, Zhou G, Liu G, Jin W. Room-temperature in situ synthesis of MOF@MXene membrane for efficient hydrogen purification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Iddya A, Zarzycki P, Kingsbury R, Khor CM, Ma S, Wang J, Wheeldon I, Ren ZJ, Hoek EMV, Jassby D. A reverse-selective ion exchange membrane for the selective transport of phosphates via an outer-sphere complexation-diffusion pathway. NATURE NANOTECHNOLOGY 2022; 17:1222-1228. [PMID: 36163505 DOI: 10.1038/s41565-022-01209-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Specific-ion selectivity is a highly desirable feature for the next generation of membranes. However, existing membranes rely on differences in charge, size and hydration energy, which limits their ability to target individual ion species. Here we demonstrate a nanocomposite ion-exchange membrane material that enables a reverse-selective transport mechanism that can selectively pass a single ion species. We demonstrate this transport mechanism with phosphate ions selectively transporting across negatively charged cation exchange membranes. Selective transport is enabled by the in situ growth of hydrous manganese oxide nanoparticles throughout a cation exchange membrane that provide a diffusion pathway via phosphate-specific, reversible outer-sphere interactions. On incorporating the hydrous manganese oxide nanoparticles, the membrane's phosphate flux increased by a factor of 27 over an unmodified cation exchange membrane, and the selectivity of phosphorous over sulfate, nitrate and chloride reaches 47, 100 and 20, respectively. By pairing ion-specific outer-sphere interactions between the target ions and appropriate nanoparticles, these nanocomposite ion-exchange materials can, in principle, achieve selective transport for a range of ions.
Collapse
Affiliation(s)
- Arpita Iddya
- Department of Civil & Environmental Engineering, Institute of the Environment & Sustainability and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Piotr Zarzycki
- Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ryan Kingsbury
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chia Miang Khor
- Department of Civil & Environmental Engineering, Institute of the Environment & Sustainability and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shengcun Ma
- Department of Civil & Environmental Engineering, Institute of the Environment & Sustainability and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jingbo Wang
- Department of Civil & Environmental Engineering, Institute of the Environment & Sustainability and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ian Wheeldon
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Zhiyong Jason Ren
- Department of Civil & Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, USA
| | - Eric M V Hoek
- Department of Civil & Environmental Engineering, Institute of the Environment & Sustainability and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Jassby
- Department of Civil & Environmental Engineering, Institute of the Environment & Sustainability and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Li J, Liao L, Jia Y, Tian T, Gao S, Zhang C, Shen W, Wang Z. Magnetic Fe3O4/ZIF-8 optimization by Box-Behnken design and its Cd(II)-adsorption properties and mechanism. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
19
|
Asadi Tashvigh A, Benes NE. Covalent organic polymers for aqueous and organic solvent nanofiltration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Wang W, Zhang Y, Tan M, Xue C, Zhou W, Bao H, Hon Lau C, Yang X, Ma J, Shao L. Recent advances in monovalent ion selective membranes towards environmental remediation and energy harvesting. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Yan J, Ji T, Sun Y, Meng S, Wang C, Liu Y. Room temperature fabrication of oriented Zr-MOF membrane with superior gas selectivity with zirconium-oxo cluster source. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Chen H, Li C, Liu L, Meng B, Yang N, Sunarso J, Liu L, Liu S, Wang X. ZIF-67 membranes supported on porous ZnO hollow fibers for hydrogen separation from gas mixtures. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Zhang K, Wu HH, Huo HQ, Ji YL, Zhou Y, Gao CJ. Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Ge S, Chen Q, Zhang Z, She S, Xu B, Liu F, Afsar NU. A Comprehensive Analysis of Inorganic Ions and Their Selective Removal from the Reconstituted Tobacco Extract Using Electrodialysis. MEMBRANES 2022; 12:membranes12060597. [PMID: 35736304 PMCID: PMC9228951 DOI: 10.3390/membranes12060597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/07/2022]
Abstract
Many tobacco stalks, dust, and fines are discharged in the tobacco industry, rich in inorganic minerals ions and nicotine salts. The high salinity and nicotine salts are challenging to be addressed by traditional treatment and are a severe threat that ought to be overcome. Thus, proper techniques can regenerate the tobacco stalks into reconstituted tobacco flakes used as cigarette filler. The electrodialysis process has been a viable approach to removing the inorganic ingredients in wastewater. We studied concentration, pH, and co-related influences with the nicotine and sugar/nicotine contents on the desalination performance. The results show that the inorganic ions such as Cl-, K+, Ca2+, and Mg2+ ions were successfully removed. When the feed concentration ranges from 3 to 15%, the removal ratio of the K+ ions is higher than Ca2+ and Mg2+ ions. As we reported previously, the K+ and Ca2+ ions are unfavorable for the total particulate matter emission but beneficial to decreasing the HCN delivery in mainstream cigarette smoke. Selective ED is a robust technology to reduce the harmful component delivery in cigarette smoke.
Collapse
Affiliation(s)
- Shaolin Ge
- IAT USTC-AHZY Joint Laboratory of Chemistry & Combustion, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China;
- Anhui Key Laboratory of Tobacco Chemistry, Anhui Tobacco Industrial Co., Ltd., 9 Tianda Road, Hefei 230088, China; (Z.Z.); (B.X.); (F.L.)
| | - Qian Chen
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China;
| | - Zhao Zhang
- Anhui Key Laboratory of Tobacco Chemistry, Anhui Tobacco Industrial Co., Ltd., 9 Tianda Road, Hefei 230088, China; (Z.Z.); (B.X.); (F.L.)
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, Anhui Tobacco Industrial Co., Ltd., 9 Tianda Road, Hefei 230088, China;
| | - Shike She
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, Anhui Tobacco Industrial Co., Ltd., 9 Tianda Road, Hefei 230088, China;
| | - Bingxia Xu
- Anhui Key Laboratory of Tobacco Chemistry, Anhui Tobacco Industrial Co., Ltd., 9 Tianda Road, Hefei 230088, China; (Z.Z.); (B.X.); (F.L.)
| | - Fei Liu
- Anhui Key Laboratory of Tobacco Chemistry, Anhui Tobacco Industrial Co., Ltd., 9 Tianda Road, Hefei 230088, China; (Z.Z.); (B.X.); (F.L.)
| | - Noor Ul Afsar
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Correspondence:
| |
Collapse
|
25
|
Lim YJ, Goh K, Wang R. The coming of age of water channels for separation membranes: from biological to biomimetic to synthetic. Chem Soc Rev 2022; 51:4537-4582. [PMID: 35575174 DOI: 10.1039/d1cs01061a] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Water channels are one of the key pillars driving the development of next-generation desalination and water treatment membranes. Over the past two decades, the rise of nanotechnology has brought together an abundance of multifunctional nanochannels that are poised to reinvent separation membranes with performances exceeding those of state-of-the-art polymeric membranes within the water-energy nexus. Today, these water nanochannels can be broadly categorized into biological, biomimetic and synthetic, owing to their different natures, physicochemical properties and methods for membrane nanoarchitectonics. Furthermore, against the backdrop of different separation mechanisms, different types of nanochannel exhibit unique merits and limitations, which determine their usability and suitability for different membrane designs. Herein, this review outlines the progress of a comprehensive amount of nanochannels, which include aquaporins, pillar[5]arenes, I-quartets, different types of nanotubes and their porins, graphene-based materials, metal- and covalent-organic frameworks, porous organic cages, MoS2, and MXenes, offering a comparative glimpse into where their potential lies. First, we map out the background by looking into the evolution of nanochannels over the years, before discussing their latest developments by focusing on the key physicochemical and intrinsic transport properties of these channels from the chemistry standpoint. Next, we put into perspective the fabrication methods that can nanoarchitecture water channels into high-performance nanochannel-enabled membranes, focusing especially on the distinct differences of each type of nanochannel and how they can be leveraged to unlock the as-promised high water transport potential in current mainstream membrane designs. Lastly, we critically evaluate recent findings to provide a holistic qualitative assessment of the nanochannels with respect to the attributes that are most strongly valued in membrane engineering, before discussing upcoming challenges to share our perspectives with researchers for pathing future directions in this coming of age of water channels.
Collapse
Affiliation(s)
- Yu Jie Lim
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore. .,School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.,Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, 637553, Singapore
| | - Kunli Goh
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore.
| | - Rong Wang
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore. .,School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
26
|
Zhao Y, Tong X, Kim J, Tong T, Huang CH, Chen Y. Capillary-Assisted Fabrication of Thin-Film Nanocomposite Membranes for Improved Solute-Solute Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5849-5859. [PMID: 35420788 DOI: 10.1021/acs.est.2c01728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efficient separation of harmful contaminants (e.g., per- and polyfluoroalkyl substances, PFASs) from valuable components (water and nutrients) is essential to the resource recovery from domestic wastewater for agricultural purposes. Such selective recovery requires precise separation at the angstrom scale. Although nanofiltration (NF) has the potential to achieve solute-solute separation, the state-of-the-art polyamide (PA) membranes are typically constrained by limited precision of solute-solute selectivity and their well-documented permeability-selectivity trade-off. Herein, we present a novel capillary-assisted interfacial polymerization (CAIP) approach to generate metal-organic framework (MOF)-PA nanocomposite membranes with reduced surface charges and more uniform pore sizes that favor solute selectivity by enhanced size exclusion. By uniquely regulating the PA-MOF interactions using the capillary force, CAIP results in effective exposure of MOF nanochannels on the membrane surface and a PA matrix with a high cross-linking gradient in the vertical direction, both of which contribute to an exceptional water permeance of ∼18.7 LMH/bar and an unprecedentedly high selectivity between nutrient ions and PFASs. Our CAIP approach breaks new ground for utilizing nanoparticles with nanochannels in fabricating the next-generation, fit-for-purpose NF membranes for improved solute-solute separations.
Collapse
Affiliation(s)
- Yangying Zhao
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xin Tong
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Juhee Kim
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
27
|
Xia L, Zhao Y, Zhang X, Qiu Y, Shao J, Dewil R, der Bruggen BV, Yang X. Ionic Control of Functional Zeolitic Imidazolate Framework-Based Membrane for Tailoring Selectivity toward Target Ions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11038-11049. [PMID: 35170949 DOI: 10.1021/acsami.1c24876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ion exchange membranes with strong ionic separation performance have strategic importance for resource recovery and water purification, but the current state-of-the-art membranes suffer from inadequate ion selective transport for the target ions. This work proposes a new class of zeolitic imidazolate framework (ZIF)-based anion exchange membranes (named as S@ZIF-AMX) with suppressed multivalent anion mobility and enhanced target ion transport via an ionic control strategy under alternating current driven assembly. In electrodialysis with an initial concentration of 50 mM of NaBr, NaCl, Na2SO4, and Na3PO4 (mixed feed) and a current density of 10 mA cm-2, the S@ZIF-AMX membrane demonstrated an excellent transport of the target ion (Cl-) based on the synergy between the Cl- regulated ZIF cavity and the electrostatic interaction with sulfonic groups. The separation efficiency and permselectivity of PO43-/Cl- through S@ZIF-AMX largely increased to 83% and 32, respectively, compared to 42% and 4.0 of the pristine AMX membrane (a commercial anion exchange membrane), respectively. Furthermore, the separation between SO42- and Cl- was also enhanced, the separation efficiency and permselectivity of SO42-/Cl- increased from 11% and 1.4 to 45% and 4.3, respectively. In addition, the combined strategy developed in the S@ZIF-AMX membrane was proven effective in promoting Cl- transport by shifting the separation equilibrium of the ion pair Br-/Cl-, which is known to be extremely challenging. This work provides a new design strategy toward pushing the limits of current ion exchange membranes for target ion separation in water, resource, and energy applications.
Collapse
Affiliation(s)
- Lei Xia
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Yan Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xi Zhang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Raf Dewil
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xing Yang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
28
|
Zhang Y, Chen D, Li N, Xu Q, Li H, He J, Lu J. High-Performance and Stable Two-Dimensional MXene-Polyethyleneimine Composite Lamellar Membranes for Molecular Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10237-10245. [PMID: 35166517 DOI: 10.1021/acsami.1c20540] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) materials are candidates for use in advanced molecular separation and water treatment. Among them, MXenes are cutting-edge two-dimensional (2D) materials with favorable properties such as high hydrophilicity, adjustable interlayer spacing, high mechanical strength, and structural stability. Therefore, they can be used to construct advanced lamellar membranes to ensure enhanced separation performance of modified membranes. Here, we prepared novel stable lamellar membranes through electrostatic attraction between polycation polyethyleneimine (PEI) and a negatively charged MXene, with hydrogen bond formation between their functional groups. By changing the pH of the suspension, the interlayer d-spacing of the prepared membrane could be altered to achieve precise molecular separation and ultrahigh organic solvent penetration. Furthermore, inserting PEI into the interlayer d-spacing of the membrane did not hinder the passage of water molecules. The prepared pH = 2-MXene-PEI membrane for dyes larger than 1.5 nm exhibited a rejection rate of greater than 96%, and the pH = 10-MXene-PEI membrane had a rejection rate of greater than 96% for dyes larger than 1.6 nm. In addition, the optimized MXene-PEI membranes showed channel stability. In this work, high-performance, stable, 2D MXene-PEI membranes with tunable nanochannels were developed. These membranes have great potential for use in precise molecular separation applications.
Collapse
Affiliation(s)
- Yawen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
29
|
Wang X, Wang Q, Zhao M, Zhang L, Ji X, Sun H, Sun Y, Ma Z, Xue J, Gao X. Fabrication of a Cation-Exchange Membrane via the Blending of SPES/N-Phthaloyl Chitosan/MIL-101(Fe) Using Response Surface Methodology for Desalination. MEMBRANES 2022; 12:144. [PMID: 35207066 PMCID: PMC8880603 DOI: 10.3390/membranes12020144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023]
Abstract
In the present work, a novel mixed matrix cation exchange membrane composed of sulfonated polyether sulfone (SPES), N-phthaloyl chitosan (NPHCs) and MIL-101(Fe) was synthesized using response surface methodology (RSM). The electrochemical and physical properties of the membrane, such as ion exchange capacity, water content, morphology, contact angle, fixed ion concentration and thermal stability were investigated. The RSM based on the Box-Behnken design (BBD) model was employed to simulate and evaluate the influence of preparation conditions on the properties of CEMs. The regression model was validated via the analysis of variance (ANOVA) which exhibited a high reliability and accuracy of the results. Moreover, the experimental data have a good fit and high reproducibility with the predicted results according to the regression analysis. The embedding of MIL-101(Fe) nanoparticles contributed to the improvement of ion selective separation by forming hydrogen bonds with the polymer network in the membrane. The optimum synthesis parameters such as degree of sulfonation (DS), the content of SPES and NPHCs and the content of MIL-101(Fe) were acquired to be 30%, 85:15 and 2%, respectively, and the corresponding desalination rate of the CEMs improved to 136% while the energy consumption reduced to 90%. These results revealed that the RSM was a promising strategy for optimizing the preparation factors of CEMs and other similar multi-response optimization studies.
Collapse
Affiliation(s)
- Xiaomeng Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (Q.W.); (M.Z.); (L.Z.)
| | - Qun Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (Q.W.); (M.Z.); (L.Z.)
| | - Mengjuan Zhao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (Q.W.); (M.Z.); (L.Z.)
| | - Lu Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (Q.W.); (M.Z.); (L.Z.)
| | - Xiaosheng Ji
- Sanya Institute of Oceanology, Chinese Academy of Sciences, Sanya 572000, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China;
| | - Yongchao Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; (Y.S.); (X.G.)
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhun Ma
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (Q.W.); (M.Z.); (L.Z.)
| | - Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
| | - Xueli Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; (Y.S.); (X.G.)
| |
Collapse
|
30
|
|
31
|
Zhao Y, Qiu Y, Mamrol N, Ren L, Li X, Shao J, Yang X, van der Bruggen B. Membrane bioreactors for hospital wastewater treatment: recent advancements in membranes and processes. Front Chem Sci Eng 2021; 16:634-660. [PMID: 34849268 PMCID: PMC8617552 DOI: 10.1007/s11705-021-2107-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/15/2021] [Indexed: 11/26/2022]
Abstract
Discharged hospital wastewater contains various pathogenic microorganisms, antibiotic groups, toxic organic compounds, radioactive elements, and ionic pollutants. These contaminants harm the environment and human health causing the spread of disease. Thus, effective treatment of hospital wastewater is an urgent task for sustainable development. Membranes, with controllable porous and nonporous structures, have been rapidly developed for molecular separations. In particular, membrane bioreactor (MBR) technology demonstrated high removal efficiency toward organic compounds and low waste sludge production. To further enhance the separation efficiency and achieve material recovery from hospital waste streams, novel concepts of MBRs and their applications are rapidly evolved through hybridizing novel membranes (non hydrophilic ultrafiltration/microfiltration) into the MBR units (hybrid MBRs) or the MBR as a pretreatment step and integrating other membrane processes as subsequent secondary purification step (integrated MBR-membrane systems). However, there is a lack of reviews on the latest advancement in MBR technologies for hospital wastewater treatment, and analysis on its major challenges and future trends. This review started with an overview of main pollutants in common hospital waste-water, followed by an understanding on the key performance indicators/criteria in MBR membranes (i.e., solute selectivity) and processes (e.g., fouling). Then, an in-depth analysis was provided into the recent development of hybrid MBR and integrated MBR-membrane system concepts, and applications correlated with wastewater sources, with a particular focus on hospital wastewaters. It is anticipated that this review will shed light on the knowledge gaps in the field, highlighting the potential contribution of hybrid MBRs and integrated MBR-membrane systems toward global epidemic prevention.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Chemical Engineering, KU Leuven, B-3001 Leuven, Belgium
| | - Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Natalie Mamrol
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Longfei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xin Li
- Department of Chemical Engineering, KU Leuven, B-3001 Leuven, Belgium
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xing Yang
- Department of Chemical Engineering, KU Leuven, B-3001 Leuven, Belgium
| | | |
Collapse
|