1
|
Jayachitra R, Lincy V, Prasannan A, Nimita Jebaranjitham J, Sangaraju S, Hong PD. Tailored fabrication of biodegradable polymer/ Fe 3O 4 doped WO 3 nano star-based porous membrane with enhanced photo fentonic activity for environmental remediation. ENVIRONMENTAL RESEARCH 2024; 248:118262. [PMID: 38280523 DOI: 10.1016/j.envres.2024.118262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
The accelerated development of special-wetting polymeric materials with hierarchical pores for membrane applications is crucial to effectively separating water-soluble and insoluble pollutants, such as oily wastewater, emulsion, organic pollutants, and heavy metals. This pressing environmental and socioeconomic issue requires the implementation of effective remediation technologies. In this study, we successfully fabricated an environmentally friendly membrane with a flexible property by combining biopolymers and magnetic nanohybrids of iron oxide (Fe3O4)-doped tungsten oxide (WO3) through a thermal-induced phase separation process (TIPS). The resulting membrane exhibited a well-defined 3D-interconnected porous network structure when blending poly (ε-caprolactone)/poly (D,L-lactide) (PCL)/(PDLLA) in an 8:2 volume ratio. The Fe3O4@WO3 nanohybrids were synthesized using a hydrothermal process, resulting in a star-shaped morphology from the sea urchin-like WO3 clusters, which showed great potential to efficiently separate water/oil contamination and facilitate visible-light-driven photocatalytic degradation of organic dyes (MB, Rh B, BY, and CR) and photoreduction of hexavalent chromium (Cr (VI)). The obtained PCL/PDLLA/Fe3O4@WO3 nanocomposite membrane demonstrated hydrophobic properties, showing a water contact angle of 95 ± 2° and an excellent oil adsorption capacity of ∼4-4.5 g/g without fouling. The interconnected porous structure of the composite membrane enabled the efficient separation of emulsions (≥99.4 %) and achieved a high permeation flux of up to 1524 L m-2 h-1 under gravity separation. Overall, we obtained a novel high-performance composite material with specialized wetting properties, offering significant potential for effectively removing insoluble and soluble organic contaminants from wastewater.
Collapse
Affiliation(s)
- Ravichandran Jayachitra
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Varghese Lincy
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan; Universidad Politecnica Taiwán Paraguay (UPTP), Paraguay
| | - Adhimoorthy Prasannan
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan.
| | - J Nimita Jebaranjitham
- P.G. Department of Chemistry, Women's Christian College (An Autonomous Institution Affiliated to University of Madras), Chennai, Tamil Nadu, India
| | - Sambasivam Sangaraju
- National Water and Energy Center, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Po-Da Hong
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan.
| |
Collapse
|
2
|
Hsiao WWW, Lincy V, Selvi SV, Prasannan A, Sambasivam S, Nimita Jebaranjitham J. Carrageenan derived polyelectrolyte complexes material: An effective bifunctional for electrochemical sensing of sulfamethazine and antibacterial activity. Int J Biol Macromol 2024; 264:130445. [PMID: 38423441 DOI: 10.1016/j.ijbiomac.2024.130445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/05/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Biopolymer-derived polyelectrolyte complexes (PECs) are a class of materials that have emerged as promising candidates for developing advanced electrochemical sensors due to their tunable properties, biocompatibility, cost-effective production, and high surface area. PECs are formed by combining positively and negatively charged polymers, resulting in a network with intriguing properties that can be tailored for specific sensing applications. The resultant PECs-based nanocomposites were used to modify the glassy carbon electrode (GCE) to detect the sulfamethazine (SFZ) antibiotic drug. In addition, electrochemical studies using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) are used to evaluate the SFZ detection ability. Similarly, various microscopic and spectroscopic studies investigated the nano composite's structural features and morphological behavior. The κ-CGN/P(Am-co-DMDAAc)-GO modified GCE demonstrated excellent detection ability of SFZ with the nano molar range and without interference with similar structural components. Furthermore, the newly fabricated electrode κ-CGN/P(Am-co-DMDAAc)-GO was derived from naturally available materials, water-soluble, low cost, biocompatible, exhibits good conductivity, and excellent catalytic properties. Finally, κ-CGN/P(Am-co-DMDAAc)-GO- modified GCE has versatile, practical applications for detecting SFZ in real-time samples and determining the efficacy of an antibacterial activity.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Varghese Lincy
- Department of Material Science and Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; Universidad Politecnica Taiwán Paraguay (UPTP), Paraguay
| | - Subash Vetri Selvi
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| | - Adhimoorthy Prasannan
- Department of Material Science and Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan.
| | - Sangaraju Sambasivam
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - J Nimita Jebaranjitham
- PG Department of Chemistry, Women's Christian College (An Autonomous Institute Affiliated to the University of Madras), College Road, Chennai 600 006, Tamil Nadu, India.
| |
Collapse
|
3
|
Zhang T, Wang X, Dong Y, Li J, Yang XY. Effective separation of water-in-oil emulsions using an under-medium superlyophilic membrane with hierarchical pores. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133305. [PMID: 38141309 DOI: 10.1016/j.jhazmat.2023.133305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Separating water-in-oil emulsions is important in terms of environmental protection and resource recovery. To address the challenges posed by the water-oil interface, superwetting materials have been designed to accomplish separation through filtration and adsorption. Superhydrophobic membranes prevent the permeation of water droplets owing to extreme repellence and their size-sieving abilities. However, their use in remediating water-contaminated oil is limited by high oil viscosities. Meanwhile, in-air superhydrophilic sorbents are rarely employed for the separation of water-in-oil emulsions due to the thermodynamic and kinetic limitations of water adsorption in oil. Herein, the integration of an under-medium superlyophilic membrane with the hierarchical porous structure of wood is presented for filtration-driven selective adsorption of water from surfactant-stabilized (10 g/L) water-in-oil emulsions. Compared to filtration through a natural wood membrane or direct adsorption using an under-oil superhydrophilic wood membrane, the under-medium superlyophilic wood membrane demonstrated high separation efficiencies of > 99.95% even when applied to the regeneration of high-viscosity lubricating (6.3 mPa s) and edible (50.5 mPa s) oils, exhibiting viscosity-dependent fluxes and excellent stability. Moreover, the cost of purifying 200 mL of lubricating oil using the modified wood membrane was much lower than the oil's market price and required a low energy consumption of ca. 1.72 kWh. ENVIRONMENTAL IMPLICATION: The ever-growing use of petroleum and industrial/domestic oil products has led to excessive (estimated at a million tons per year) output of waste oils. Because direct discharge of waste oils into the environment causes serious pollution problems, separating water-in-oil emulsions is important in terms of environmental protection and resource recovery. Here filtration-driven water adsorption has been demonstrated to be a feasible method for the remediation of water-contaminated waste oils, even those that are highly viscous.
Collapse
Affiliation(s)
- Tianyue Zhang
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Peace Avenue, Wuhan 430081, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Shenzhen Huazhong University of Science and Technology Research Institute, 9 Yuexing Third Road, Nanshan District, Shenzhen 518000, China
| | - Xuejiao Wang
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Peace Avenue, Wuhan 430081, China
| | - Ying Dong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, 9 Yuexing Third Road, Nanshan District, Shenzhen 518000, China
| | - Jing Li
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Peace Avenue, Wuhan 430081, China.
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
4
|
Chen J, Ni Y, Gou Y, Zhu T, Sun L, Chen Z, Huang J, Yang D, Lai Y. Hydrophobic organogel sorbent and its coated porous substrates for efficient oil/water emulsion separation and effective spilled oil remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132674. [PMID: 37801974 DOI: 10.1016/j.jhazmat.2023.132674] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Frequent offshore oil leakage accidents and large quantities of oily-wastewater produced in industry and daily life bring huge challenges to global water purification. The adaptability and stability of organogels as adsorbent materials have shown wide application prospects in the field of oil-water separation. Herein, the organogels displayed stable hydrophobic/lipophilic properties with high absorption ability (1200 wt./wt%), efficient sorption of multiple emulsions (>99.0%), and good reusability. More importantly, the organogels were successfully assembled with 2D/3D substrates to achieve excellent sorption capacity (102.5 g/g) and recycling performance (50 cycles). The gel-carbon black assembled on MS (GCB-MS) sorbent with excellent photothermal conversion performance, and can rapidly heat the surface to 70.4 °C under 1.0 sunlight radiation (1.0 kW/m2) and achieved an ultra-high sorption capacity of about 103 g/g for viscous crude oil. Meanwhile, the GCB-MS was combined with a pump to build continuous oil spill cleaning equipment to achieve a super-fast cleanup rate of 6.83 g/min. The developed hydrophobic organogels had been expanded unprecedentedly to realize the comprehensive treatment of oily-wastewater in complex environments, including layered oils, emulsions, and viscous crude oil spill, which provided an effective path for the comprehensive treatment of oily wastewater in complex environments.
Collapse
Affiliation(s)
- Jiajun Chen
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, PR China; College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Yimeng Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Yukui Gou
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Tianxue Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China
| | - Lan Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore
| | - Jianying Huang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, PR China; College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China.
| | - Dapeng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, PR China.
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China.
| |
Collapse
|
5
|
Wang Y, Meng F, Han L, Liu X, Guo F, Lu H, Cheng D, Wang W. Constructing a highly tough, durable, and renewable flexible filter by epitaxial growth of a glass fiber fabric for high flux and superefficient oil-water separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130807. [PMID: 36709734 DOI: 10.1016/j.jhazmat.2023.130807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
The separation and purification of complex and stable stubborn oily sewage is extremely challenging. To respond to this challenge, we developed a powerful flexible filter with ultrahigh strength, durability, flux, separation efficiency, and a multiobjective separation function based on a universal epitaxial growth process of glass fiber fabric (Gf). The underwater oil contact angle (UOCA) of the silicate@Gf (MgSi@Gf) filter is 156.3°, so it can achieve both an ultrahigh permeation flux (5632.7 L·m-2·h-1) and oil-water separation efficiency (99.5%) under gravity (≈ 1 kPa) in purifying surfactant-stabilized emulsions, actual industrial oily sewage and mechanical cold rolling emulsions. The filter with a high tensile strength (66.5 MPa) and oil invasion pressure (4626 Pa) can withstand the impact of much sewage or intense water flow. The filter can tolerate extreme conditions and can maintain high separation performance in acid or alkaline (pH 1-13), high or low temperature (100 °C, 200 °C, -18 °C) conditions or natural salty waters such as seawater. The filter can remove methylene blue (MB) dye (99.8%) by filtration, and can be repeatedly and easily reconstructed (renewable advantage). The filter shows great potential for efficiently eliminating the hazards of contaminants in actual oily sewage and thus protect human health.
Collapse
Affiliation(s)
- Yiwen Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Fanxiang Meng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Lei Han
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Xiangyu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Fang Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Hang Lu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Dehao Cheng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
6
|
Wu J, Cui Z, Su Y, Yu Y, Yue B, Hu J, Qu J, Tian D, Zhan X, Li J, Cai Y. Biomimetic cellulose-nanocrystalline-based composite membrane with high flux for efficient purification of oil-in-water emulsions. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130729. [PMID: 36621295 DOI: 10.1016/j.jhazmat.2023.130729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The massive discharge of oily wastewater and oil spills are causing serious pollution to water resources. It is urgent to require clean and efficient method of purifying oily emulsions. Although the separation membranes with selective wettability have been widely used in the efficient purification of oil/water emulsions. It is still very challenging to develop functional films that are environmentally friendly, fouling resistant, inexpensive, easy to prepare, easy to scale, and highly efficient. Cellulose nanocrystalline-based composite membranes (CCM) were prepared by surface-initiated atom transfer radical polymerization (SATRP) and vacuum self-assembly. The prepared CCM is superhydrophilic and superoleophobic underwater due to the hydrophilic nature of the modified cellulose-nanocrystalline and the micro-nano surface structure. The CCM shows high separation efficiency (> 99.9 %), high flux (16,692 L-1·m-2·h-1·bar-1) for surfactant-stabilized oil-in-water emulsions, good cycle stability and anti-fouling performance. This biomass-derived membrane is green, cheap, easy to manufacture, scalable, super-wettability, and durability, it promises to be an alternative to separation membranes in today's market.
Collapse
Affiliation(s)
- Jianfei Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ziwei Cui
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yuxuan Su
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yang Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Bo Yue
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Dan Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xianxu Zhan
- Dehua Tubaobao New Decoration Material Co., Ltd., Huzhou 313200, PR China.
| | - Jianzhang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, PR China.
| | - Yahui Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Dehua Tubaobao New Decoration Material Co., Ltd., Huzhou 313200, PR China.
| |
Collapse
|
7
|
Lignin microparticles-reinforced cellulose filter paper for simultaneous removal of emulsified oils and dyes. Int J Biol Macromol 2023; 230:123120. [PMID: 36603724 DOI: 10.1016/j.ijbiomac.2022.123120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/14/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
The presence of multiple pollutants in wastewater, often with complex interactions, poses a significant challenge for conventional membranes to effectively remove multiple pollutants simultaneously. Herein, a lignin microparticles-reinforced cellulose filter paper (FP@AL-LS-DA) was fabricated via an aldol condensation between lignin and cellulose filter paper and cross-linking with dopamine hydrochloride (DA), which showed desired rejection of oil-in-water emulsions and dyes. Characterizations revealed that the addition of lignin and DA effectively narrowed the pore size (from 4.45 μm to 2.01 μm) and enhanced the rigidity and stability of the cellulose filter paper, thus making it not easily damaged in the water environment and showing excellent tolerance to strong acid and high-salt environments. The oil-in-water emulsions removal efficiency was higher than 99 % even after ten times usage, and the oil flux was kept stable at 52.54 L·m-2·h-1, indicating that FP@AL-LS-DA had outstanding reusability and stability. Remarkably, FP@AL-LS-DA showed excellent removal efficiency (>99 %) for complex pollutants containing dyes and oil-in-water emulsions. In this work, we demonstrate a lignin microparticles-reinforced cellulose filter paper that is simple to prepare and can efficiently separate oil-in-water emulsions and remove dyes.
Collapse
|
8
|
Li M, Li F, Zhen C, Fu P, Yang S, Lu Y. Zero-Material Cost Production of Soil-Coated Fabrics with Underwater Superoleophobicity for Antifouling Oil/Water Separation. MEMBRANES 2023; 13:276. [PMID: 36984663 PMCID: PMC10054142 DOI: 10.3390/membranes13030276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Soil-coated fabrics were fabricated by scrape-coating of soil slurry onto cotton fabrics. The raw materials, soil, and cotton fabrics were, respectively, obtained from farmland and waste bed sheets, making the method a zero-material cost way to produce superwetting membrane. The superhydrophilic/underwater superoleophobic soil-coated fabrics exhibit high efficiency (>99%), ultra-high flux (~45,000 L m-2 h-1), and excellent antifouling behavior for separating water from various oils driven by gravity. The simple fabrication and superior performance suggest that the soil-coated fabric could be a promising candidate as a filtration membrane for practical applications in industrial oily wastewater and oil spill treatments.
Collapse
|
9
|
Tao X, Chen X, Cai S, Yan F, Li S, Jin S, Zhu H. A multifunctional heterogeneous superwettable coating for water collection, oil/water separation and oil absorption. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130166. [PMID: 36265375 DOI: 10.1016/j.jhazmat.2022.130166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Herein, inspired by desert beetles, we fabricated a multifunctional heterogeneous superwettable coating (MHSC) for water collection and oily wastewater cleanup. The selective modifications of 1-octadecanethiol (ODT) treated CoO and P25 TiO2 nanoparticles (NPs) were prepared, so hydrophobic CoO NPs and superhydrophilic P25 NPs were combined on the MHSC, showing the water contact angle (WCA) of 156.5° and rolling-off angle (RA) of 6.4°. With the aid of waterborne polyurethane (WPU), five kinds of substrates (i.e., glass slide, dish, wood, fabric, sponge) spray-coated by MHSC displayed high-efficiency water collection rates (WCRs) of 18.1 ± 0.7 mg min-1 cm-2. Moreover, MHSC coated fabric manifested robust oil/water separations with separation efficiencies (SEs) > 99.7 % and fluxes ranged from 9.7 to 11.0 L m-2 s-1. Efficient oil sorption from oily water was obtained by MHSC coated sponge with oil absorption capacities (OACs) of 6.5-29.5 g g-1. Further, even dealt with the treatments of mechanical destructions, extreme temperature and UV illumination, the coated materials remained stable performances.
Collapse
Affiliation(s)
- Xianlu Tao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Xiaoyu Chen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Si Cai
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Fuan Yan
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Siqi Li
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China.
| | - Hai Zhu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, PR China.
| |
Collapse
|
10
|
Su X, Huang S, Wu W, Li K, Xie H, Wu Y, Zhang X, Xie X. Protonated cross-linkable nanocomposite coatings with outstanding underwater superoleophobic and anti-viscous oil-fouling properties for crude oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129129. [PMID: 35584584 DOI: 10.1016/j.jhazmat.2022.129129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Superhydrophilic/underwater superoleophobic coatings that effectively prevent viscous oil contamination have been of considerable interest for the great potential in oil spill remediation and oilfield wastewater treatment. In the present work, a protonated cross-linkable nanocomposite coating with robust underwater superoleophobicity and intensified hydration capability is proposed through the synthesis of active polymeric nanocomplex (PNC), cross-linking reaction between PNC and hydrophilic chitosan (CS), and final protonation to further improve water affinity. Benefiting from the hierarchical structure and strong hydration capability induced by electrostatic interactions and hydrogen bondings, the nanocomposite coating coated textile exhibits excellent superhydrophilicity (within 0.28 s with water contact angle reaching 0°), underwater superoleophobicity (underwater crude oil contact angle at 160°), and ultralow oil adhesion even to highly viscous silicone oil. Moreover, the nanocomposite coating presents a robust chemical resistance, mechanical tolerance, and storage stability. Simultaneously, the nanocomposite coating adapts well to various porous substrates (e.g., stainless steel mesh and Ni sponge) with great anti-oil-fouling and self-cleaning performances. Importantly, the coating coated textile is successfully applied in crude oil/water separation with excellent efficiency and repeatability. The findings conceivably stand out as a new methodology to fabricate superhydrophilic/underwater superoleophobic materials with outstanding anti-viscous oil-fouling property for practically treating oily wastewater.
Collapse
Affiliation(s)
- Xiaojing Su
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shengqi Huang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wenjian Wu
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Kunquan Li
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Huali Xie
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yunhui Wu
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xiaofan Zhang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xin Xie
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
11
|
A greener approach to design Janus PVDF membrane with polyphenols using one-pot fabrication for emulsion separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Yang J, Yu T, Wang Z, Li S, Wang L. Substrate-independent multifunctional nanostructured coating for diverse wastewater treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|