1
|
Liu Z, Cao Y, Koros WJ. Synergistic Tuning of Microstructure and Morphology in Carbon Molecular Sieve Hollow Fibers for Propylene/Propane Separation. Angew Chem Int Ed Engl 2025; 64:e202414683. [PMID: 39283815 DOI: 10.1002/anie.202414683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 11/03/2024]
Abstract
Asymmetric carbon molecular sieve (CMS) hollow fiber membranes with tunable micro- and macro-structural morphologies for energy efficient propylene-propane separation are reported here. A sub-glass transition temperature (sub-Tg) thermal oxidative crosslinking strategy enables simultaneous optimization of the intrinsic molecular sieving properties while also reducing the thickness of the CMS "skin" derived from the 6FDA : BPDA/DAM polyimide precursors. Such synergistic tuning of CMS microstructure and macroscopic morphology of CMS hollow fibers enables significantly increased propylene permeance (reaching 186.5 GPU) while maintaining an appealing propylene/propane selectivity of 13.3 for 50/50 propylene/propane mixed gas feeds. Our findings reveal a more refined and versatile tool than available with previous O2-doping pretreatments. The advanced approach here should be broadly useful to other polyimide precursors and diverse gas pairs.
Collapse
Affiliation(s)
- Zhongyun Liu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, 30332, Atlanta, GA, USA
| | - Yuhe Cao
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, 30332, Atlanta, GA, USA
| | - William J Koros
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, 30332, Atlanta, GA, USA
| |
Collapse
|
2
|
Gong M, Yu W, Ma J, Liu JR, Sun Q, Luo X, Zhang MZ. Visual screening of butyrylcholinesterase inhibitors by a cellulose membrane biosensor with amide-bonded immobilization of butyrylcholinesterase in a solid-phase enzyme-catalyzed reaction. Int J Biol Macromol 2024; 285:138598. [PMID: 39662542 DOI: 10.1016/j.ijbiomac.2024.138598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
The rapid discovery of highly active butyrylcholinesterase (BChE) inhibitors is key to the treatment of the late stages of Alzheimer's disease. Herein, a colorimetric cellulose membrane (CM)-based biosensor was developed. The CM was employed as a carrier, which can be immobilized with the BChE and 5,5'-dithio-(2-nitrobenzoic acid) (DTNB) to prepare the biosensor for the solid-phase enzyme-catalyzed reaction. Specifically, the CM was oxidized to the oxidized cellulose membrane (OCM), which can further covalently bind the BChE to prepare the BChE-immobilized cellulose membrane (BCM). Then, the DTNB was adsorbed to the BCM to prepare the BDCM biosensor. The BDCM biosensor can visually detect S-butyrylthiocholine iodide at the yellow light signal with several characters, including sensitivity (LOD 1.56 μM), affinity (Km = 140.48 ± 5.42 μM), stability (over 1 month), via the BChE-catalyzed solid-phase reaction. Furthermore, the BDCM biosensor was applied to screen and determine the specific commercial BChE inhibitors tacrine and rivastigmine, with the IC50 values of 30.99 ± 12.20 nM and 2.02 ± 0.13 μM, respectively, from 13 different commercial inhibitors. This work provided a new method of visual BChE inhibitor screening and a useful strategy for the design of enzyme-based immobilization technology cellulose membrane biosensors.
Collapse
Affiliation(s)
- Mixue Gong
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wenlong Yu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jingfang Ma
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jing-Rui Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Sun
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Xiaogang Luo
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Ming-Zhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Deng M, Wei J, Du W, Qin Z, Zhang Z, Yang L, Yao L, Jiang W, Tang B, Ma X, Dai Z. High-Performance Carbon Molecular Sieve Membranes Derived from a PPA-Cross-linked Polyimide Precursor for Gas Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44927-44937. [PMID: 39152899 DOI: 10.1021/acsami.4c09795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Carbon molecular sieve (CMS) membranes have emerged as attractive gas membranes due to their tunable pore structure and consequently high gas separation performances. In particular, polyimides (PIs) have been considered as promising CMS precursors because of their tunable structure, superior gas separation performance, and excellent thermal and mechanical strength. In the present work, polyphosphoric acid (PPA) was employed as both cross-linker and porogen, it created pores within the PI polymeric matrix, while it also effectively acting as a cross-linker to regulate the ultramicropores of the CMS membranes, thus simultaneously improving both permeability and selectivity of the CMS membranes. By employing PI/PPA hybrid with PPA content of 5 wt % as a precursor, the obtained CMS membrane exhibited a CO2 and He permeability of 1378.3 Barrer and 1431.4 Barrer, respectively, which was an approximately 10-fold increase compared to the precursor membrane. Under optimized conditions, the CO2/CH4 and He/CH4 selectivity of the obtained CMS membrane reached 81.5 and 89.9, respectively, which was 278% and 307% higher than that of the pristine PI membrane. In addition, the membrane exhibited good long-term stability during a one-week continuous test. This study clearly denoted PPA can be used for precisely tailoring the ultramicroporosity of CMS membranes.
Collapse
Affiliation(s)
- Min Deng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- National Engineering Research Centre for Flue Gas Desulfurization, Chengdu 610065, China
- Carbon Neutral Technology Innovation Center of Sichuan, Chengdu 610065, China
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China
| | - Jing Wei
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- National Engineering Research Centre for Flue Gas Desulfurization, Chengdu 610065, China
- Carbon Neutral Technology Innovation Center of Sichuan, Chengdu 610065, China
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China
| | - Wentao Du
- Dongfang Boiler Co. Ltd., Zigong 643001, China
| | - Zikang Qin
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- National Engineering Research Centre for Flue Gas Desulfurization, Chengdu 610065, China
- Carbon Neutral Technology Innovation Center of Sichuan, Chengdu 610065, China
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China
| | - Zimei Zhang
- National Engineering Research Centre for Flue Gas Desulfurization, Chengdu 610065, China
- Carbon Neutral Technology Innovation Center of Sichuan, Chengdu 610065, China
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610065, China
| | - Lin Yang
- National Engineering Research Centre for Flue Gas Desulfurization, Chengdu 610065, China
- Carbon Neutral Technology Innovation Center of Sichuan, Chengdu 610065, China
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China
| | - Lu Yao
- National Engineering Research Centre for Flue Gas Desulfurization, Chengdu 610065, China
- Carbon Neutral Technology Innovation Center of Sichuan, Chengdu 610065, China
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China
| | - Wenju Jiang
- National Engineering Research Centre for Flue Gas Desulfurization, Chengdu 610065, China
- Carbon Neutral Technology Innovation Center of Sichuan, Chengdu 610065, China
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China
| | - Bo Tang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610065, China
| | - Xiaohua Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Zhongde Dai
- National Engineering Research Centre for Flue Gas Desulfurization, Chengdu 610065, China
- Carbon Neutral Technology Innovation Center of Sichuan, Chengdu 610065, China
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Tiihonen LV, Bernardo G, Dalgliesh R, Mendes A, Parnell SR. Influence of the coagulation bath on the nanostructure of cellulose films regenerated from an ionic liquid solution. RSC Adv 2024; 14:12888-12896. [PMID: 38650684 PMCID: PMC11033612 DOI: 10.1039/d4ra00971a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Cellulose membranes were prepared from an EMIMAc ionic liquid solution by nonsolvent-induced phase separation (NIPS) in coagulation baths of water-acetone mixtures, ethanol-water mixtures and water at different temperatures. High water volume fractions in the coagulation bath result in a highly reproducible gel-like structure with inhomogeneities observed by small-angle neutron scattering (SANS). A structural transition of cellulose takes place in water-acetone baths at very low water volume fractions, while a higher water bath temperature increases the size of inhomogeneities in the gel-like structure. These findings demonstrate the value of SANS for characterising and understanding the structure of regenerated cellulose films in their wet state. Such insights can improve the engineering and structural tuning of cellulose membranes, either for direct use or as precursors for carbon molecular sieve membranes.
Collapse
Affiliation(s)
- Lassi V Tiihonen
- Faculty of Applied Sciences, Delft University of Technology 2629 JB Delft Netherlands
| | - Gabriel Bernardo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto Rua Dr Roberto Frias 4200-465 Porto Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto Rua Dr Roberto Frias 4200-465 Porto Portugal
| | - Robert Dalgliesh
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory Chilton Oxfordshire OX11 0QX UK
| | - Adélio Mendes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto Rua Dr Roberto Frias 4200-465 Porto Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto Rua Dr Roberto Frias 4200-465 Porto Portugal
| | - Steven R Parnell
- Faculty of Applied Sciences, Delft University of Technology 2629 JB Delft Netherlands
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory Chilton Oxfordshire OX11 0QX UK
| |
Collapse
|
5
|
Chen Y, Zhang X, Luo X. Enzyme colorimetric cellulose membrane bioactivity strips based on acetylcholinesterase immobilization for inhibitors preliminary screening. Colloids Surf B Biointerfaces 2023; 223:113184. [PMID: 36739673 DOI: 10.1016/j.colsurfb.2023.113184] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023]
Abstract
To quickly screen the active pharmaceutical ingredient that can be used as acetylcholinesterase inhibitors (AChEIs) to treat Alzheimer's disease, an enzyme colorimetric cellulose membrane bioactivity strip (CBS) was developed for simple and rapid screening of AChEIs. The amino group of acetylcholinesterase (AChE) undergoes Schiff base reaction with the aldehyde group on the oxidized cellulose membranes, then the AChE was covalently cross-linking on the surface of cellulose membranes, enabling the screening based on Ellman's enzyme colorimetric method. When the enzyme activity of AChE was inhibited after incubation with inhibitors, the hydrolysis of S-Acetylthiocholine iodide decreased, consequently, the 5-thio-2-nitrobenzoic acid generated by the reaction with 5,5'-dithiobis (2-nitrobenzoic acid) also decreased, leading to a decreased color intensity. In addition, CBSs had fast chromogenic time, excellent specificity, and extraordinary storage stability. Tacrine and Donepezil were used as representative inhibitors during the detection, while their IC50 and limit of detection were determined. Therefore, our work not only established a platform for effective preliminary screening of AChEIs but also inspired the further development of other cellulose membrane-based biosensors.
Collapse
Affiliation(s)
- Yuqing Chen
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China
| | - Xinyi Zhang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China
| | - Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China; School of Materials Science and Engineering, Zhengzhou University, No.100 Science Avenue, Zhengzhou 450001, Henan Province, PR China.
| |
Collapse
|
6
|
Recent Advances in Poly(Ionic Liquid)-Based Membranes for CO 2 Separation. Polymers (Basel) 2023; 15:polym15030667. [PMID: 36771968 PMCID: PMC9920068 DOI: 10.3390/polym15030667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Poly(ionic liquid)-based membranes have been the subject of intensive research in the last 15 years due to their potential for the separation of CO2 from other gases. In this short review, different types of PIL-based membranes for CO2 separation are described (neat PIL membranes; PIL-IL composite membranes; PIL-polymer blend membranes; PIL-based block copolymer membranes, and PIL-based mixed matrix membranes), and their state-of-the-art separation results for different gas pairs (CO2/N2, CO2/H2, and CO2/CH4) are presented and discussed. This review article is focused on the most relevant research works performed over the last 5 years, that is, since the year 2017 onwards, in the field of poly(ionic liquid)-based membranes for CO2 separation. The micro- and nano-morphological characterization of the membranes is highlighted as a research topic that requires deeper study and understanding. Nowadays there is an array of advanced structural characterization techniques, such as neutron scattering techniques with contrast variation (using selective deuteration), that can be used to probe the micro- and nanostructure of membranes, in length scales ranging from ~1 nm to ~15 μm. Although some of these techniques have been used to study the morphology of PIL-based membranes for electrochemical applications, their use in the study of PIL-based membranes for CO2 separation is still unknown.
Collapse
|
7
|
Zhou Y, Yuan Y, Cong S, Liu X, Wang Z. N2-selective adsorbents and membranes for natural gas purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Tomé LC, Santos DMF, Velizarov S, Coelhoso IM, Mendes A, Crespo JG, de Pinho MN. Overview of Membrane Science and Technology in Portugal. MEMBRANES 2022; 12:197. [PMID: 35207118 PMCID: PMC8877918 DOI: 10.3390/membranes12020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/10/2022]
Abstract
Membrane research in Portugal is aligned with global concerns and expectations for sustainable social development, thus progressively focusing on the use of natural resources and renewable energy. This review begins by addressing the pioneer work on membrane science and technology in Portugal by the research groups of Instituto Superior Técnico-Universidade de Lisboa (IST), NOVA School of Science and Technology-Universidade Nova de Lisboa (FCT NOVA) and Faculdade de Engenharia-Universidade do Porto (FEUP) aiming to provide an historical perspective on the topic. Then, an overview of the trends and challenges in membrane processes and materials, mostly in the last five years, involving Portuguese researchers, is presented as a contribution to a more sustainable water-energy-material-food nexus.
Collapse
Affiliation(s)
- Liliana C. Tomé
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (L.C.T.); (S.V.); (J.G.C.)
| | - Diogo M. F. Santos
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Laboratory for Physics of Materials and Emerging Technologies (LaPMET), Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (D.M.F.S.); (M.N.d.P.)
| | - Svetlozar Velizarov
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (L.C.T.); (S.V.); (J.G.C.)
| | - Isabel M. Coelhoso
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (L.C.T.); (S.V.); (J.G.C.)
| | - Adélio Mendes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - João G. Crespo
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (L.C.T.); (S.V.); (J.G.C.)
| | - Maria Norberta de Pinho
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Laboratory for Physics of Materials and Emerging Technologies (LaPMET), Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (D.M.F.S.); (M.N.d.P.)
| |
Collapse
|