1
|
Andrey V, Koshevaya E, Mstislav M, Parfait K. Piezoelectric PVDF and its copolymers in biomedicine: innovations and applications. Biomater Sci 2024; 12:5164-5185. [PMID: 39258881 DOI: 10.1039/d4bm00904e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In recent years, poly(vinylidene fluoride) (PVDF) has emerged as a versatile polymer with a wide range of applications across various fields. PVDF's piezosensitivity, versatility, crystalline structure, and tunable parameters have established it as a highly sought-after material. Furthermore, PVDF and its copolymers exhibit excellent processability and chemical resistance to a diverse array of substances. Of particular significance is its remarkable structural stability in physiological media, which highlights its potential for use in the development of biomedical products. This review offers a comprehensive overview of the latest advancements in PVDF-based biomedical systems. It examines the fabrication of stimulus-responsive delivery systems, bioelectric therapy devices, and tissue-regenerating scaffolds, all of which harness the piezosensitivity of PVDF. Moreover, the potential of PVDF in the fabrication of both invasive and non-invasive diagnostic tools is investigated, with particular emphasis on its flexibility, transparency, and piezoelectric efficiency. The material's high biocompatibility and physiological stability are of paramount importance in the development of implantable sensors for long-term health monitoring, which is crucial for the management of chronic diseases and postoperative care. Additionally, we discuss a novel approach to photoacoustic microscopy that employs a PVDF sensor, thereby eliminating the necessity for external contrast agents. This technique provides a new avenue for non-invasive imaging in biomedical applications. Finally, we explore the challenges and prospects for the development of PVDF-based systems for a range of biomedical applications. This review is distinctive in comparison to other reviews on PVDF due to its concentrated examination of biomedical applications, including pioneering imaging techniques, long-term health monitoring, and a detailed account of advancements in the field. Collectively, these elements illustrate the potential of PVDF to markedly influence biomedical engineering and patient care, distinguishing it from existing literature. By leveraging the distinctive attributes of PVDF and its copolymers, researchers can continue to advance the frontiers of biomedical engineering, with the potential to transform patient care and treatment outcomes.
Collapse
Affiliation(s)
| | - Ekaterina Koshevaya
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, 123182, Russia
| | - Makeev Mstislav
- Bauman Moscow State Technical University, Moscow, 141005, Russia.
| | - Kezimana Parfait
- Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| |
Collapse
|
2
|
Song L, Wang B, Li J, Wang T, Li W, Xu X, Feng T, Yang H, Hou L. A self-cleaning photocatalytic membrane loaded with Bi 2O 2CO 3/In(OH) 3 S-scheme heterojunction composites for removing tetracycline from aqueous solutions. J Colloid Interface Sci 2024; 671:664-679. [PMID: 38820850 DOI: 10.1016/j.jcis.2024.05.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Bi2O2CO3/In(OH)3 (BON) photocatalysts were synthesized by a one-pot method and loaded onto polyvinylidene fluoride (PVDF) membranes to obtain a Bi2O2CO3/In(OH)3/PVDF (BON-M) catalytic membrane system. The catalytic membranes demonstrated complete degradation of tetracycline within 40 min under visible light. They demonstrated robust photocatalytic activity across a broad pH range (5-11) and in the presence of coexisting ions. The membranes demonstrated excellent self-cleaning performance. Following exposure to light, the irreversible contamination decreased from 27.1% to 4.7% and the membrane's permeability was almost completely restored. Moreover, the charge transfer mechanism at the S-scheme heterojunction interface of BON was demonstrated by Density functional theory and in-situ X-ray Photoelectron Spectroscopy characterisation, and the active sites involved in tetracycline's degradation were identified. Meanwhile, the mechanism of the "anemone effect" of BON-M was demonstrated in conjunction with Electron paramagnetic resonance, and the intrinsic Some factors enhancing the membranes' photocatalytic activity are specified.
Collapse
Affiliation(s)
- Lei Song
- College of Civil Engineering, Guizhou University, Guiyang 550025, China
| | - Bin Wang
- College of Civil Engineering, Guizhou University, Guiyang 550025, China; Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jiang Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Tao Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wenjia Li
- College of Civil Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaoyi Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Taotao Feng
- College of Civil Engineering, Guizhou University, Guiyang 550025, China
| | - Huaikai Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Li'an Hou
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
3
|
Zhang J, Peng K, Xu ZK, Xiong Y, Liu J, Cai C, Huang X. A comprehensive review on the behavior and evolution of oil droplets during oil/water separation by membranes. Adv Colloid Interface Sci 2023; 319:102971. [PMID: 37562248 DOI: 10.1016/j.cis.2023.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/01/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Membrane separation technology has significant advantages for treating oil-in-water emulsions. Understanding the evolution of oil droplets could reveal the interfacial and colloidal interactions, facilitate the design of advanced membranes, and improve the separation performances. This review on the characteristic behavior and evolution of oil droplets focuses on the advanced analytical techniques, and the subsequent fouling as well as demulsification effects during membrane separation. A detailed introduction is provided on microscopic observations and numerical simulations of the dynamic evolution of oil droplets, featuring real-time in-situ visualization and accurate reconstruction, respectively. Characteristic behaviors of these oil droplets include attachment, pinning, wetting, spreading, blockage, intrusion, coalescence, and detachment, which have been quantified by specific proposed parameters and criteria. The fouling process can be evaluated using Hermia and resistance models. The related adhesion force and intrusion pressure as well as droplet-droplet/membrane interfacial interactions can be accurately quantified using various force analysis methods and advanced force measurement techniques. It is encouraging to note that oil coalescence has been achieved through various effects such as electrostatic interactions, mechanical actions, Laplace pressure/surface free energy gradients, and synergistic effects on functional membranes. When oil droplets become destabilized and coalesce into larger ones, the functional membranes can overcome the limitations of size-sieving effect to attain higher separation efficiency. This not only bypasses the trade-off between permeability and rejection, but also significantly reduces membrane fouling. Finally, the challenges and potential research directions in membrane separation are proposed. We hope this review will support the engineering of advanced materials for oil/water separation and research on interface science in general.
Collapse
Affiliation(s)
- Jialu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Kaiming Peng
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China.
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, No.38 Zheda Road, Hangzhou 310027, PR China
| | - Yongjiao Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Jia Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Xiangfeng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
4
|
Huang Y, Jiang Y, Jin H, Wang S, Xu J, Fan Y, Wang L. Cobalt Metal-Organic Framework and its Composite Membranes as Heterogeneous Catalysts for Cyanosilylation and Strecker reactions. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
5
|
Li Y, Pan G, Zhang Y, Wang J, Yu H, Zhao G, Zhao M, Tang G, Guo Y, Wu C, Liu Y. A new method for tailoring the surface pore size and internal pore structure of ultrafiltration membranes without using additives—Atomization-assisted nonsolvent induced phase separation method. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
6
|
Eskhan A, Johnson D. Microscale characterization of abiotic surfaces and prediction of their biofouling/anti-biofouling potential using the AFM colloidal probe technique. Adv Colloid Interface Sci 2022; 310:102796. [DOI: 10.1016/j.cis.2022.102796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022]
|
7
|
Zheng H, Zhu M, Wang D, Zhou Y, Sun X, Jiang S, Li M, Xiao C, Zhang D, Zhang L. Surface modification of PVDF membrane by CNC/Cu-MOF-74 for enhancing antifouling property. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Organic solvent permeation characteristics of TiO2-ZrO2 composite nanofiltration membranes prepared using organic chelating ligand to control pore size and surface property. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Robust modified nylon mesh for the separation of crude-oil/water emulsion based on the coupling of squeezing coalescence demulsification and sieving separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Polyphenylsulfone/polyethylene glycol hexadecyl ether blend membranes with enhanced surface hydrophilicity for high-performance nanofiltration of dye solution. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Lin YC, Zhuang GL, Tasi PF, Tseng HH. Removal of protein, histological dye and tetracycline from simulated bioindustrial wastewater with a dual pore size PPSU membrane. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128525. [PMID: 35228077 DOI: 10.1016/j.jhazmat.2022.128525] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 05/09/2023]
Abstract
Wastewater from production of active pharmaceutical ingredients (APIs) often contains proteins, azo dyes or antibiotics, which cause severe water eutrophication and growth of drug-resistant bacteria. A series of polyphenylsulfone (PPSU) membranes was prepared to determine the relationships between pore structures and the abilities of different membranes to separate foulants, and the characteristics and performance of the ultrafiltration membranes were investigated. The structure of the skin layer and the cross-sectional texture were converted from dense and finger-like macrovoids to porous sponge shapes because of a delayed liquid-liquid (L-L) demixing time. Formation of novel PPSU membranes via noncovalent bonding interactions was evaluated, and this selectively affected the membrane surface pore structure, layer thickness, surface polarity and electronic repulsive force. All PPSU membranes demonstrated excellent rejection of organic foulants, including bovine serum albumin (BSA) (~100% rejection) and acid red 1 (AR1) (~90% rejection). Additionally, M5 provided an excellent tetracycline (TC) rejection efficiency of 89% in the 1st cycle. Due to the small size of TC, pore size effects were displayed. Moreover, the pure water flux recovery rate (FRR) increased from 85% (M1, water/ethanol: 100/0) to 99.9% (M4, water/ethanol: 30/70) after BSA filtration because the weak nonsolvent decreased the roughness of the membrane surface, and the membrane made with added EtOH yielded excellent FRR values (99.9%) after AR1 filtration. Therefore, PPSU membranes successfully achieved over 90% rejection of organic foulants and excellent FRRs, indicating that they may be suitable for purifying wastewater from API plants that generate organic foulants with a wide range of sizes.
Collapse
Affiliation(s)
- Yi-Chen Lin
- School of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales 2006, Australia
| | - Guo-Liang Zhuang
- School of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Chemical Engineering, Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Fang Tasi
- School of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Hui-Hsin Tseng
- School of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
12
|
|