1
|
Abdullahi AA, Saleh TA. Synthesis of aminopropyl triethoxysilane/melamine incorporated superhydrophilic membranes for simultaneous removal of oil, metals, and Salt ions from produced water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121603. [PMID: 38963967 DOI: 10.1016/j.jenvman.2024.121603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/11/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
Water treatment has turned out to be more important in most societies due to the expansion of most economies and to advancement of industrialization. Developing efficient materials and technologies for water treatment is of high interest. Thin film nanocomposite membranes are regarded as the most effective membranes available for salts, hydrocarbon, and environmental pollutants removal. These membranes improve productivity while using less energy than conventional asymmetric membranes. Here, the polyvinylidene fluoride (PVDF) membranes have been successfully modified via dip single-step coating by silica-aminopropyl triethoxysilane/trimesic acid/melamine nanocomposite (Si-APTES-TA-MM). The developed membranes were evaluated for separating the emulsified oil/water mixture, the surface wettability of the membrane materials is therefore essential. During the conditioning step, that is when the freshwater was introduced, the prepared membrane reached a flux of about 27.77 L m-2 h-1. However, when the contaminated water was introduced, the flux reached 18 L m-2 h-1, alongside an applied pressure of 400 kPa. Interestingly, during the first 8 h of the filtration test, the membrane showed 90 % rejection for ions including Mg2+, and SO42- and ≈100 % for organic pollutants including pentane, isooctane, toluene, and hexadecane. Also, the membrane showed 98 % rejection for heavy metals including strontium, lead, and cobalt ions. As per the results, the membrane could be recommended as a promising candidate to be used for a mixture of salt ions, hydrocarbons, and mixtures of heavy metals from wastewater.
Collapse
Affiliation(s)
- Abbas A Abdullahi
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
2
|
Hu M, Chiao YH, Fu W, Zhang P, Fang S, Guan K, Gonzales RR, Li Z, Xu P, Mai Z, Dai L, Matsuyama H. One-Step Phase Separation and Mineralization Fabrication of Membranes for Oily Wastewater Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38723-38732. [PMID: 38993041 DOI: 10.1021/acsami.4c07067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Oily wastewater threatens the environment and the human health. Membrane technology offers a simple and efficient alternative to separating oil and water. However, complex membrane modifications are usually employed to optimize the separation performance. In this research, we develop an extremely simple one-step method to in situ calcium carbonate (CaCO3) nanoparticles onto a porous polyketone (PK) membrane via a nonsolvent induced phase separation (NIPS)-mineralization strategy. We utilized the unique chemical property of PK, which allows it to dissolve in a resorcinol aqueous solution. PK was mixed with tannic acid (TA) and calcium chloride (CaCl2) in a resorcinol aqueous solution to fabricate a casting solution. The activated membrane was cast and immersed into a sodium carbonate (Na2CO3) aqueous solution for taking the one-step NIPS-mineralization process. This proposed NIPS-mineralization mechanism comes to two conclusions: (i) the resulting membrane with comprehensive oleophobic properties and enhanced permeation flux for applications of oil/water separation with ultralow fouling and (ii) simplified the procedure to optimize the membrane performance using regular NIPS steps. The current work explores a one-step NIPS-mineralization technique that offers a novel approach to preparing membranes with highly efficient oil/water separation performance.
Collapse
Affiliation(s)
- Mengyang Hu
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Yu-Hsuan Chiao
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Wenming Fu
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Pengfei Zhang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Shang Fang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Kecheng Guan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Ralph Rolly Gonzales
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Zhan Li
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Ping Xu
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Zhaohuan Mai
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Liheng Dai
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| |
Collapse
|
3
|
Xie L, Liu Y, Xu S, Zhang W. Enhanced Anti-Biofouling Properties of BWRO Membranes via the Deposition of Poly (Catechol/Polyamine) and Ag Nanoparticles. MEMBRANES 2023; 13:membranes13050530. [PMID: 37233591 DOI: 10.3390/membranes13050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The surface modification of reverse osmosis (RO) membranes to improve their anti-biofouling properties is gaining increased attention. Here, we modified the polyamide brackish water reverse osmosis (BWRO) membrane via the biomimetic co-deposition of catechol (CA)/tetraethylenepentamine (TEPA) and in situ growth of Ag nanoparticles. Ag ions were reduced into Ag nanoparticles (AgNPs) without extraneous reducing agents. The hydrophilic property of the membrane was improved, and the zeta potential was also increased after the deposition of poly (catechol/polyamine) and AgNPs. Compared with the original RO membrane, the optimized PCPA3-Ag10 membrane showed a slight reduction in water flux, and the salt rejection declined, but enhanced anti-adhesion and anti-bacterial activities were observed. The FDRt of the PCPA3-Ag10 membranes during the filtration of BSA, SA and DTAB solution were 5.63 ± 0.09%, 18.34 ± 0.33% and 34.12 ± 0.15%, respectively, much better than those of the original membrane. Moreover, the PCPA3-Ag10 membrane exhibited a 100% reduction in the number of viable bacteria (B. subtilis and E. coli) inoculated on the membrane. The stability of the AgNPs was also high enough, and these results verify the effectiveness of poly (catechol/polyamine) and the AgNP-based modification strategy for the control of fouling.
Collapse
Affiliation(s)
- Lixin Xie
- School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering Tianjin University, Tianjin 300350, China
| | - Yaqian Liu
- School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering Tianjin University, Tianjin 300350, China
| | - Shichang Xu
- School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering Tianjin University, Tianjin 300350, China
| | - Wen Zhang
- School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering Tianjin University, Tianjin 300350, China
| |
Collapse
|
4
|
Zhang X, Zhou Y, Zhao F, Geng C, Li Z, Zhang J, Yang Y, Chen H. Anti-fouling mechanism of ultrafiltration membranes modified by graphene oxide with different charged groups under simulated seawater conditions. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
5
|
Khajouei M, Najafi M, Jafari SA, Latifi M. Membrane Surface Modification via In Situ Grafting of GO/Pt Nanoparticles for Nitrate Removal with Anti-Biofouling Properties. MICROMACHINES 2023; 14:mi14010128. [PMID: 36677189 PMCID: PMC9863807 DOI: 10.3390/mi14010128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/01/2023]
Abstract
Nanofiltration processes for the removal of emerging contaminants such as nitrate are a focus of attention of research works as an efficient technique for providing drinking water for people. Polysulfone (PSF) nanofiltration membranes containing graphene oxide (GO)/Pt (0, 0.25, 0.5, 0.75, 1 wt%) nanoparticles were generated with the phase inversion pathway. The as-synthesized samples were characterized by FTIR, SEM, AFM, and contact angle tests to study the effect of GO/Pt on hydrophilicity and antibacterial characteristics. The results conveyed that insertion of GO/Pt dramatically improved the biofouling resistance of the membranes. Permeation experiments indicated that PSF membrane embracing 0.75 wt% GO/Pt nanoparticles had the highest nitrate flux and rejection ability. The membrane's configuration was simulated using OPEN-MX simulating software indicating membranes maintaining 0.75 wt% of GO/Pt nanoparticles revealed the highest stability, which is well in accordance with experimental outcomes.
Collapse
Affiliation(s)
- Mohammad Khajouei
- Department of Chemical Engineering, Polytechique Montréal, Montréal, QC H3T 1J4, Canada
| | - Mahsa Najafi
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Seyed Ahmad Jafari
- Department of Chemical and Process Engineering, University of Bologna, 40126 Bologna, Italy
| | - Mohammad Latifi
- Department of Chemical Engineering, Polytechique Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
6
|
Cosme JRA, Castro‐Muñoz R, Vatanpour V. Recent Advances in Nanocomposite Membranes for Organic Compound Remediation from Potable Waters. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jose R. Aguilar Cosme
- University of Maryland Baltimore Department of Surgery 670 W Baltimore St 21201 Baltimore USA
| | - Roberto Castro‐Muñoz
- Gdansk University of Technology Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering 11/12 Narutowicza St. 80-233 Gdansk Poland
- Tecnologico de Monterrey, Campus Toluca Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista 50110 Toluca de Lerdo Mexico
| | - Vahid Vatanpour
- Kharazmi University Department of Applied Chemistry, Faculty of Chemistry 15719-14911 Tehran Iran
- Istanbul Technical University, Maslak National Research Center on Membrane Technologies 34469 Istanbul Turkey
| |
Collapse
|
7
|
Enhancing the permeability, anti-biofouling performance and long-term stability of TFC nanofiltration membrane by imidazole-modified carboxylated graphene oxide/polyethersulfone substrate. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Huo HQ, Mi YF, Yang X, Lu HH, Ji YL, Zhou Y, Gao CJ. Polyamide thin film nanocomposite membranes with in-situ integration of multiple functional nanoparticles for high performance reverse osmosis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Tong Y, Wang Y, Bian S, Ge H, Xiao F, Li L, Gao C, Zhu G. Incorporating Ag@RF core-shell nanomaterials into the thin film nanocomposite membrane to improve permeability and long-term antibacterial properties for nanofiltration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156231. [PMID: 35643139 DOI: 10.1016/j.scitotenv.2022.156231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Ag@resorcinol-formaldehyde resin (Ag@RF) core-shell nanomaterials were prepared by Stöber method, and introduced into polyamide (PA) selective layer of thin-film nanocomposite (TFN) membranes through the interfacial polymerization (IP) process. Due to the abundant hydroxyl groups on the surface and suitable particle size, Ag@RF nanoparticles (Ag@RFs) could be uniformly dispersed in the piperazine aqueous solution and participate in the IP process to precisely regulate the microstructure of the PA selective layer. The resulting "crater structure" and irregular granular structure enlarged the permeable area and contributed to the surface hydrophilicity. For the nanofiltration application, the water flux of TFN membrane modified by Ag@RFs to Na2SO4 solution reached 150 L·m-2·h-1 which was 87.5% greater than TFC, and salt rejection was maintained. The antibacterial efficiency of the prepared TFN membrane on E. coli reached 99.6% in the antibacterial experiment. In addition, due to the special structure of Ag@RFs, the TFN membrane also showed an expected slow-release capability of Ag+, allowing for long-term anti-biofouling properties. This work demonstrates that Ag@RF core-shell nanoparticles with high compatibility of organic nanoparticles and antibacterial properties of Ag nanoparticles could be used as promising nanofillers for designing functional nanofiltration TFN membranes.
Collapse
Affiliation(s)
- Yunbo Tong
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanyi Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Shengjun Bian
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Haochen Ge
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Fangkun Xiao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Lingling Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Congjie Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Guiru Zhu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
10
|
Liu C, Wang Z, He Q, Jackson J, Faria AF, Zhang W, Song D, Ma J, Sun Z. Facile preparation of anti-biofouling reverse osmosis membrane embedded with polydopamine-nano copper functionality: Performance and mechanism. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
11
|
Zhang Y, Duan X, Tan B, Jiang Y, Wang Y, Qi T. PVDF microfiltration membranes modified with AgNPs/tannic acid for efficient separation of oil and water emulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Metal-Coordinated Nanofiltration Membranes Constructed on Metal Ions Blended Support toward Enhanced Dye/Salt Separation and Antifouling Performances. MEMBRANES 2022; 12:membranes12030340. [PMID: 35323815 PMCID: PMC8954445 DOI: 10.3390/membranes12030340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022]
Abstract
Metal-phenol coordination is a widely used method to prepare nanofiltration membrane. However, the facile, controllable and scaled fabrication remains a great challenge. Herein, a novel strategy was developed to fabricate a loose nanofiltration membrane via integrating blending and interfacial coordination strategy. Specifically, iron acetylacetonate was firstly blended in Polyether sulfone (PES) substrate via non-solvent induced phase separation (NIPS), and then the loose selective layer was formed on the membrane surface with tannic acid (TA) crosslinking reaction with Fe3+. The surface properties, morphologies, permeability and selectivity of the membranes were carefully investigated. The introduction of TA improved the surface hydrophilicity and negative charge. Moreover, the thickness of top layer increased about from ~30 nm to 119 nm with the increase of TA assembly time. Under the optimum preparation condition, the membrane with assembly 3 h (PES/Fe-TA3h) showed pure water flux of 175.8 L·m−2·h−1, dye rejections of 97.7%, 97.1% and 95.0% for Congo red (CR), Methyl blue (MB) and Eriochrome Black T (EBT), along with a salt penetration rate of 93.8%, 95.1%, 97.4% and 98.1% for Na2SO4, MgSO4, NaCl and MgCl2 at 0.2 MPa, respectively. Both static adhesion tests and dynamic fouling experiments implied that the TA modified membranes showed significantly reduced adsorption and high FRR for the dye solutions separation. The PES/Fe-TA3h membrane exhibited high FRR of 90.3%, 87.5% and 81.6% for CR, EBT and MB in the fouling test, stable CR rejection (>97.2%) and NaCl permeation (>94.6%) in 24 h continuous filtration test. The combination of blending and interfacial coordination assembly method could be expected to be a universal way to fabricate the loose nanofiltration membrane for effective fractionation of dyes and salts in the saline textile wastewater.
Collapse
|
13
|
Al Mogbel MS, Elabbasy MT, Mohamed RS, Ghoniem AE, El-Kader MFHA, Menazea AA. Improvement in antibacterial activity of Poly Vinyl Pyrrolidone/Chitosan incorporated by graphene oxide NPs via laser ablation. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02838-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|