1
|
Hossain SM, Patnaik P, Sharma R, Sarkar S, Chatterjee U. Unveiling CeZnO x Bimetallic Oxide: A Promising Material to Develop Composite SPPO Membranes for Enhanced Oxidative Stability and Fuel Cell Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7097-7111. [PMID: 38296332 DOI: 10.1021/acsami.3c16113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The incorporation of cerium-zinc bimetallic oxide (CeZnOx) nanostructures in sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) membranes holds promise in an enhanced and durable fuel cell performance. This investigation delves into the durability and efficiency of SPPO membranes intercalated with CeZnOx nanostructures by varying the filler loading of 1, 2, and 3% (w/w). The successful synthesis of CeZnOx nanostructures by the alkali-aided deposition method is confirmed by wide-angle X-ray diffraction spectroscopy (WAXS), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses. CeZnOx@SPPO nanocomposite membranes are fabricated using a solution casting method. The intricate interplay of interfacial adhesion and coupling configuration between three-dimensional CeZnOx and sulfonic moieties of the SPPO backbone yields an enhancement in the bound water content within the proton exchange membranes (PEMs). This constructs simultaneously an extensive hydrogen bonding network intertwined with the proton transport channels, thereby elevating the proton conductivity (Km). The orchestrated reversible redox cycling involving Ce3+/Ce4+ enhances the quenching of aggressive radicals, aided by Zn2+, promoting oxygen deficiency and Ce3+ concentration. This synergistic efficacy ultimately translates into composite PEMs characterized by a mere 4% mass loss and a nominal 6% decrease in Km after rigorous exposure to Fenton's solution. Remarkably, an improved power density of 403.2 mW/cm2 and a maximum current density of 1260.6 mA/cm2 were achieved with 2% loading of CeZnOx (SPZ-2) at 75 °C and 100% RH. The fuel cell performance of SPZ-2 is 74% higher than its corresponding pristine SPPO membrane.
Collapse
Affiliation(s)
- Sk Miraz Hossain
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pratyush Patnaik
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritika Sharma
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Sarkar
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Uma Chatterjee
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Lebedev VT, Kulvelis YV, Shvidchenko AV, Primachenko ON, Odinokov AS, Marinenko EA, Kuklin AI, Ivankov OI. Electrochemical Properties and Structure of Membranes from Perfluorinated Copolymers Modified with Nanodiamonds. MEMBRANES 2023; 13:850. [PMID: 37999338 PMCID: PMC10673602 DOI: 10.3390/membranes13110850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023]
Abstract
In this study, we aimed to design and research proton-conducting membranes based on Aquivion®-type material that had been modified with detonation nanodiamonds (particle size 4-5 nm, 0.25-5.0 wt. %). These nanodiamonds carried different functional groups (H, OH, COOH, F) that provided the hydrophilicity of the diamond surface with positive or negative potential, or that strengthened the hydrophobicity of the diamonds. These variations in diamond properties allowed us to find ways to improve the composite structure so as to achieve better ion conductivity. For this purpose, we prepared three series of membrane films by first casting solutions of perfluorinated Aquivion®-type copolymers with short side chains mixed with diamonds dispersed on solid substrates. Then, we removed the solvent and the membranes were structurally stabilized during thermal treatment and transformed into their final form with -SO3H ionic groups. We found that the diamonds with a hydrogen-saturated surface, with a positive charge in aqueous media, contributed to the increase in proton conductivity of membranes to a greater rate. Meanwhile, a more developed conducting diamond-copolymer interface was formed due to electrostatic attraction to the sulfonic acid groups of the copolymer than in the case of diamonds grafted with negatively charged carboxyls, similar to sulfonic groups of the copolymer. The modification of membranes with fluorinated diamonds led to a 5-fold decrease in the conductivity of the composite, even when only a fraction of diamonds of 1 wt. % were used, which was explained by the disruption in the connectivity of ion channels during the interaction of such diamonds mainly with fluorocarbon chains of the copolymer. We discussed the specifics of the mechanism of conductivity in composites with various diamonds in connection with structural data obtained in neutron scattering experiments on dry membranes, as well as ideas about the formation of cylindrical micelles with central ion channels and shells composed of hydrophobic copolymer chains. Finally, the characteristics of the network of ion channels in the composites were found depending on the type and amount of introduced diamonds, and correlations between the structure and conductivity of the membranes were established.
Collapse
Affiliation(s)
- Vasily T. Lebedev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Yuri V. Kulvelis
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | | | - Oleg N. Primachenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia; (O.N.P.); (E.A.M.)
| | - Alexei S. Odinokov
- Russian Research Center of Applied Chemistry, 193232 St. Petersburg, Russia;
| | - Elena A. Marinenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia; (O.N.P.); (E.A.M.)
| | - Alexander I. Kuklin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia; (A.I.K.); (O.I.I.)
| | - Oleksandr I. Ivankov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia; (A.I.K.); (O.I.I.)
| |
Collapse
|
3
|
Son J, Riechers SL, Yu XY. Microscale Electrochemical Corrosion of Uranium Oxide Particles. MICROMACHINES 2023; 14:1727. [PMID: 37763890 PMCID: PMC10537459 DOI: 10.3390/mi14091727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Understanding the corrosion of spent nuclear fuel is important for the development of long-term storage solutions. However, the risk of radiation contamination presents challenges for experimental analysis. Adapted from the system for analysis at the liquid-vacuum interface (SALVI), we developed a miniaturized uranium oxide (UO2)-attached working electrode (WE) to reduce contamination risk. To protect UO2 particles in a miniatured electrochemical cell, a thin layer of Nafion was formed on the surface. Atomic force microscopy (AFM) shows a dense layer of UO2 particles and indicates their participation in electrochemical reactions. Particles remain intact on the electrode surface with slight redistribution. X-ray photoelectron spectroscopy (XPS) reveals a difference in the distribution of U(IV), U(V), and U(VI) between pristine and corroded UO2 electrodes. The presence of U(V)/U(VI) on the corroded electrode surface demonstrates that electrochemically driven UO2 oxidation can be studied using these cells. Our observations of U(V) in the micro-electrode due to the selective semi-permeability of Nafion suggest that interfacial water plays a key role, potentially simulating a water-lean scenario in fuel storage conditions. This novel approach offers analytical reproducibility, design flexibility, a small footprint, and a low irradiation dose, while separating the α-effect. This approach provides a valuable microscale electrochemical platform for spent fuel corrosion studies with minimal radiological materials and the potential for diverse configurations.
Collapse
Affiliation(s)
- Jiyoung Son
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Shawn L. Riechers
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Xiao-Ying Yu
- Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37830, USA
| |
Collapse
|
4
|
Safronova EY, Lysova AA, Voropaeva DY, Yaroslavtsev AB. Approaches to the Modification of Perfluorosulfonic Acid Membranes. MEMBRANES 2023; 13:721. [PMID: 37623782 PMCID: PMC10456953 DOI: 10.3390/membranes13080721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023]
Abstract
Polymer ion-exchange membranes are featured in a variety of modern technologies including separation, concentration and purification of gases and liquids, chemical and electrochemical synthesis, and hydrogen power generation. In addition to transport properties, the strength, elasticity, and chemical stability of such materials are important characteristics for practical applications. Perfluorosulfonic acid (PFSA) membranes are characterized by an optimal combination of these properties. Today, one of the most well-known practical applications of PFSA membranes is the development of fuel cells. Some disadvantages of PFSA membranes, such as low conductivity at low humidity and high temperature limit their application. The approaches to optimization of properties are modification of commercial PFSA membranes and polymers by incorporation of different additive or pretreatment. This review summarizes the approaches to their modification, which will allow the creation of materials with a different set of functional properties, differing in ion transport (first of all proton conductivity) and selectivity, based on commercially available samples. These approaches include the use of different treatment techniques as well as the creation of hybrid materials containing dopant nanoparticles. Modification of the intrapore space of the membrane was shown to be a way of targeting the key functional properties of the membranes.
Collapse
Affiliation(s)
- Ekaterina Yu. Safronova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Avenue, 31, 119991 Moscow, Russia; (A.A.L.); (D.Y.V.); (A.B.Y.)
| | | | | | | |
Collapse
|
5
|
Sultana M, Ahmaruzzaman M. A novel Ce-Ni@biochar nanocomposite with enhanced photocatalytic activity towards organic dyes degradation: impact of process variables and water matrices. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83463-83484. [PMID: 37340166 DOI: 10.1007/s11356-023-28034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/29/2023] [Indexed: 06/22/2023]
Abstract
The intent of this research work is to implement a biogenic, affordable, and highly effective Ce-Ni@biochar catalyst in order to study its photoactivity in the removal of crystal violet and malachite green oxalate. The catalyst was synthesized using liquid phase reduction method where cerium and nickel nanoparticles are embedded on the rice husk biochar for photocatalytic degradation of organic dyes in the presence of sunshine. Various characterization techniques were conducted on fabricated catalyst for adequate evaluation of the chemical composition as well as morphological and topographical properties of the formed compound. The nanoparticles embedded on biochar persuade increased charge separation that resulted in a substantial decrease in electron-hole recombination rate. The synergistic actions of the catalyst resulted in a high level of photocatalytic activity. The fabricated nanocatalyst showed excellent photoactivity that caused 96 and 99% degradation of crystal violet and malachite green oxalate, a growing industrial pollutant, within 35 and 25 min, respectively. A persuasive mechanism and kinetics are well presented. A series of investigations were done on other factors, such as contact duration, catalyst dosage, starting concentration, interfering ions, and pH, to know its degradation pursuance. The impacts of different water matrices were also investigated. The removal effectiveness of the synthesized catalyst persisted after five consecutive cycles. Marking the burgeoning industrial effluents as a result of rapid industrialization and also focusing on easy availability and low-cost source as well as high efficiency, reusability of the catalyst imparts its novelty and need of this research work.
Collapse
Affiliation(s)
- Musfica Sultana
- Department of Chemistry, National Institute of Technology Silchar, Assam, 788010, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, Assam, 788010, India.
| |
Collapse
|
6
|
Dehnou KH, Norouzi GS, Majidipour M. A review: studying the effect of graphene nanoparticles on mechanical, physical and thermal properties of polylactic acid polymer. RSC Adv 2023; 13:3976-4006. [PMID: 36756574 PMCID: PMC9891084 DOI: 10.1039/d2ra07011a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Polylactic acid (PLA) is a linear aliphatic polyester thermoplastic made from renewable sources such as sugar beet and cornstarch. Methods of preparation of polylactic acid are biological and chemical. The advantages of polylactic acid are biocompatibility, easily processing, low energy loss, transparency, high strength, resistance to water and fat penetration and low consumption of carbon dioxide during production. However, polylactic acid has disadvantages such as hydrophobicity, fragility at room temperature, low thermal resistance, slow degradation rate, permeability to gases, lack of active groups and chemical neutrality. To overcome the limitations of PLA, such as low thermal stability and inability to absorb gases, nanoparticles such as graphene are added to improve its properties. Extensive research has been done on the introduction of graphene nanoparticles in PLA, and all of these studies have been studied. In this study, we intend to study a comprehensive study of the effect of graphene nanoparticles on the mechanical, thermal, structural and rheological properties of PLA/Gr nanocomposites and also the effect of UV rays on the mechanical properties of PLA/Gr nanocomposites.
Collapse
Affiliation(s)
- Kianoush Hatami Dehnou
- Department of Materials Science and Engineering, School of Engineering, Shiraz University Shiraz Iran
| | - Ghazal Saki Norouzi
- Chemical Engineering Department, Faculty of Engineering, Razi University Iran
| | | |
Collapse
|
7
|
Luo J, Yang Q, Tan S, Wang C, Wu Y. Anisotropic polymer membranes retaining nanolayered hydrogen sulfate anions for enhanced anhydrous proton conduction. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Tinh VDC, Thuc VD, Jeon Y, Gu GY, Kim D. Highly durable poly(arylene piperidinium) composite membranes modified with polyhedral oligomeric silsesquioxane for fuel cell and water electrolysis application. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Xu L, Liu D, Liu W, Yang J, Huang J, Wang X, He Q. Ammonia Recovery from Wastewater as a Fuel: Effects of Supporting Electrolyte on Ammonium Permeation through a Cation-Exchange Membrane. ACS OMEGA 2022; 7:20634-20643. [PMID: 35755378 PMCID: PMC9219067 DOI: 10.1021/acsomega.2c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Electrodeionization (EDI) is used to recover ammonia from wastewater as a fuel, but how its performance for ammonia recovery is affected by the supporting electrolyte is not very clear. This study involved experimental tests and theoretical calculations on NH3 recovery, NH4 + permeation, and NH4 + and Na+ interacting with the functional groups in a cation exchange membrane (CEM) using Na2SO4 as the supporting electrolyte. The results demonstrated that a low concentration (≤0.250 mol L-1 of Na2SO4) was conducive to NH4 + permeation, while the a concentration (0.750 mol L-1 of Na2SO4) hindered NH4 + permeation. A maximum recovery efficiency of ammonia of 80.00%, a current efficiency of 70.10%, and an energy balance ratio of 0.66 were obtained at 0.250 mol L-1 of Na2SO4. Numerical results indicated that an increase in Na2SO4 concentration caused severe concentration polarization that resisted NH4 + migration in the CEM. The DFT results demonstrated that competitive adsorption of Na+ to the CEM hindered NH4 + migration. The weaker interacting force between NH4 + and the sulfonate functional group (-SOH3) in comparison to that between Na+ and -SOH3 might be related to the geometric and orientation effects, which generated an additional energy barrier for NH4 + transport. Therefore, this study suggests that the supporting electrolyte concentration should be matched with that of the desalted ions.
Collapse
Affiliation(s)
- Linji Xu
- Faculty
of Environment and Ecology, Chongqing University, Chongqing 400044, People’s Republic of China
| | - Dingyang Liu
- Chongqing
Key Laboratory of Heterogeneous Material Mechanics, College of Aerospace
Engineering, Chongqing University, Chongqing 400040, People’s Republic of China
| | - Wenzong Liu
- School
of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, People’s Republic of China
| | - Jixiang Yang
- Key
Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese
Academy of Sciences, Chongqing, 401174, People’s Republic
of China
| | - Jiansheng Huang
- School
of Chemistry and Chemical Engineering, Chongqing
University of Science and Technology, Chongqing 401331, People’s Republic of China
| | - Xinzhu Wang
- Chongqing
Key Laboratory of Heterogeneous Material Mechanics, College of Aerospace
Engineering, Chongqing University, Chongqing 400040, People’s Republic of China
| | - Qiang He
- Faculty
of Environment and Ecology, Chongqing University, Chongqing 400044, People’s Republic of China
| |
Collapse
|
10
|
A Facile and Sustainable Enhancement of Anti-Oxidation Stability of Nafion Membrane. MEMBRANES 2022; 12:membranes12050521. [PMID: 35629847 PMCID: PMC9147541 DOI: 10.3390/membranes12050521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023]
Abstract
•OH radicals are the main cause of chemical degradation of Nafion membranes in fuel cell operation. Although the cerium ion (Ce3+/4+, Ce) is reported as an effective •OH radical quencher, its membrane application has critical limitations associated with the reduction of membrane proton conductivity and its leaking. In this study, the Ce-grafted graphitic carbon nitrides (g-C3N4) (CNCe) nano-particles are synthesized and embedded in Nafion membranes to prolong the •OH radical scavenging effect. The synthesis of CNCe nano-particles is evaluated by X-ray diffraction, energy dispersive X-ray analysis, and transmission electron microscopy. Compared with the pristine and Ce-blended Nafion membranes, the CNCe imbedded ones show tremendous improvement in long-term anti-oxidation stability. While the fluoride emission rates of Nafion are 0.0062 mg·cm−2·h−1 at the anode and 0.0034 mg·cm−2·h−1 at the cathode, those of Nafion/CNCe membranes are 0.0037 mg·cm−2·h−1 at the anode and 0.0023 mg·cm−2·h−1 at the cathode. The single cell test for Nafion/CNCe membranes at 80 °C and 50% relative humidity illustrates much better durability than those for Nafion and Nafion/Ce, indicating its superior scavenging effect on •OH radicals.
Collapse
|