1
|
Bhalani DV, Lim B. Hydrogen Separation Membranes: A Material Perspective. Molecules 2024; 29:4676. [PMID: 39407605 PMCID: PMC11478078 DOI: 10.3390/molecules29194676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/14/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The global energy market is shifting toward renewable, sustainable, and low-carbon hydrogen energy due to global environmental issues, such as rising carbon dioxide emissions, climate change, and global warming. Currently, a majority of hydrogen demands are achieved by steam methane reforming and other conventional processes, which, again, are very carbon-intensive methods, and the hydrogen produced by them needs to be purified prior to their application. Hence, researchers are continuously endeavoring to develop sustainable and efficient methods for hydrogen generation and purification. Membrane-based gas-separation technologies were proven to be more efficient than conventional technologies. This review explores the transition from conventional separation techniques, such as pressure swing adsorption and cryogenic distillation, to advanced membrane-based technologies with high selectivity and efficiency for hydrogen purification. Major emphasis is placed on various membrane materials and their corresponding membrane performance. First, we discuss various metal membranes, including dense, alloyed, and amorphous metal membranes, which exhibit high hydrogen solubility and selectivity. Further, various inorganic membranes, such as zeolites, silica, and CMSMs, are also discussed. Major emphasis is placed on the development of polymeric materials and membranes for the selective separation of hydrogen from CH4, CO2, and N2. In addition, cutting-edge mixed-matrix membranes are also delineated, which involve the incorporation of inorganic fillers to improve performance. This review provides a comprehensive overview of advancements in gas-separation membranes and membrane materials in terms of hydrogen selectivity, permeability, and durability in practical applications. By analyzing various conventional and advanced technologies, this review provides a comprehensive material perspective on hydrogen separation membranes, thereby endorsing hydrogen energy for a sustainable future.
Collapse
Affiliation(s)
| | - Bogyu Lim
- Department of Engineering Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
2
|
Chen C, Shen L, Lin H, Zhao D, Li B, Chen B. Hydrogen-bonded organic frameworks for membrane separation. Chem Soc Rev 2024; 53:2738-2760. [PMID: 38333989 DOI: 10.1039/d3cs00866e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a new class of crystalline porous materials that are formed through the interconnection of organic or metal-organic building units via intermolecular hydrogen bonds. The remarkable flexibility and reversibility of hydrogen bonds, coupled with the customizable nature of organic units, endow HOFs with mild synthesis conditions, high crystallinity, solvent processability, and facile self-healing and regeneration properties. Consequently, these features have garnered significant attention across various fields, particularly in the realm of membrane separation. Herein, we present an overview of the recent advances in HOF-based membranes, including their advanced fabrication strategies and fascinating applications in membrane separation. To attain the desired HOF-based membranes, careful consideration is dedicated to crucial factors such as pore size, stability, hydrophilicity/hydrophobicity, and surface charge of the HOFs. Additionally, diverse preparation methods for HOF-based membranes, including blending, in situ growth, solution-processing, and electrophoretic deposition, have been analyzed. Furthermore, applications of HOF-based membranes in gas separation, water treatment, fuel cells, and other emerging application areas are presented. Finally, the challenges and prospects of HOF-based membranes are critically pointed out.
Collapse
Affiliation(s)
- Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Dieling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, China
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Mubashir M, Ahmad T, Liu X, Rehman LM, de Levay JPBB, Al Nuaimi R, Thankamony R, Lai Z. Artificial intelligence and structural design of inorganic hollow fiber membranes: Materials chemistry. CHEMOSPHERE 2023; 338:139525. [PMID: 37467860 DOI: 10.1016/j.chemosphere.2023.139525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
A key challenge is to produce the uniform morphology and regular pore design of inorganic hollow fiber membranes (HFMs) due to involvement of multiple parameters including, fabrication process and materials chemistry. Inorganic HFMs required technical innovations via novel structural design and artificial intelligence (AI) to produce the uniform structure and regular pore design. Therefore, this review aims at critical analysis on the most recent and relevant approaches to tackle the issues related to tune the morphology and pore design of inorganic HFMs. Structural design and evaluation of routes towards the dope suspension, spinning, and sintering of inorganic HFMs are critically analysed. AI, driving forces and challenges involved for harnessing of materials are revealed in this review. AI programs used for the prediction of pore design and performance of HFMs have also been explained in this review. Overall, this review will provide the understanding to build the equilibrium in spinning and sintering processes to control the design of micro-channels, and structural properties of inorganic HFMs. This review has great significance to control the new design of membranes via AI programs. This review also explain the inorganic membrane efficiency as algal-bioreactor.
Collapse
Affiliation(s)
- Muhammad Mubashir
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Tausif Ahmad
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Xiaowei Liu
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lubna Muzamil Rehman
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jean-Pierre Benjamin Boross de Levay
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Reham Al Nuaimi
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Roshni Thankamony
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zhiping Lai
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
4
|
Wang D, Zhao Y. Rigid-Flexible Hybrid Porous Molecular Crystals with Guest-Induced Reversible Crystallinity. Angew Chem Int Ed Engl 2023; 62:e202217903. [PMID: 36720717 DOI: 10.1002/anie.202217903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
A weak CH/O hydrogen-bonded organic framework (HOF) with both rigidity and flexibility that could easily and reversibly switch from a non-crystalline to a crystalline phase was constructed. The specific solvent molecule acts as a "key" to control the crystallinity, while the highly rigid triangle macrocycle as the building block is the "lock". The introduction and removal of the "key" could influence the local flexibility of the whole framework and lead to switchable crystallinity. Furthermore, the obtained HOF exhibits excellent separation efficiency for benzene and cyclohexane (94.4 %).
Collapse
Affiliation(s)
- Danbo Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266000, Qingdao, China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266000, Qingdao, China
| |
Collapse
|
5
|
Application of Hydrogen-Bonded Organic Frameworks in Environmental Remediation: Recent Advances and Future Trends. SEPARATIONS 2023. [DOI: 10.3390/separations10030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The hydrogen-bonded organic frameworks (HOFs) are a class of porous materials with crystalline frame structures, which are self-assembled from organic structures by hydrogen bonding in non-covalent bonds π-π packing and van der Waals force interaction. HOFs are widely used in environmental remediation due to their high specific surface area, ordered pore structure, pore modifiability, and post-synthesis adjustability of various physical and chemical forms. This work summarizes some rules for constructing stable HOFs and the synthesis of HOF-based materials (synthesis of HOFs, metallized HOFs, and HOF-derived materials). In addition, the applications of HOF-based materials in the field of environmental remediation are introduced, including adsorption and separation (NH3, CO2/CH4 and CO2/N2, C2H2/C2He and CeH6, C2H2/CO2, Xe/Kr, etc.), heavy metal and radioactive metal adsorption, organic dye and pesticide adsorption, energy conversion (producing H2 and CO2 reduced to CO), organic dye degradation and pollutant sensing (metal ion, aniline, antibiotic, explosive steam, etc.). Finally, the current challenges and further studies of HOFs (such as functional modification, molecular simulation, application extension as remediation of contaminated soil, and cost assessment) are discussed. It is hoped that this work will help develop widespread applications for HOFs in removing a variety of pollutants from the environment.
Collapse
|
6
|
Wang Y, Ren Y, Cao Y, Liang X, He G, Ma H, Dong H, Fang X, Pan F, Jiang Z. Engineering HOF-Based Mixed-Matrix Membranes for Efficient CO 2 Separation. NANO-MICRO LETTERS 2023; 15:50. [PMID: 36787058 PMCID: PMC9929012 DOI: 10.1007/s40820-023-01020-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) have emerged as a new class of crystalline porous materials, and their application in membrane technology needs to be explored. Herein, for the first time, we demonstrated the utilization of HOF-based mixed-matrix membrane for CO2 separation. HOF-21, a unique metallo-hydrogen-bonded organic framework material, was designed and processed into nanofillers via amine modulator, uniformly dispersing with Pebax polymer. Featured with the mix-bonded framework, HOF-21 possessed moderate pore size of 0.35 nm and displayed excellent stability under humid feed gas. The chemical functions of multiple binding sites and continuous hydrogen-bonded network jointly facilitated the mass transport of CO2. The resulting HOF-21 mixed-matrix membrane exhibited a permeability above 750 Barrer, a selectivity of ~ 40 for CO2/CH4 and ~ 60 for CO2/N2, surpassing the 2008 Robeson upper bound. This work enlarges the family of mixed-matrix membranes and lays the foundation for HOF membrane development.
Collapse
Affiliation(s)
- Yuhan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, 522000, Guangdong Province, People's Republic of China
| | - Yanxiong Ren
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, 522000, Guangdong Province, People's Republic of China
| | - Yu Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China
| | - Xu Liang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China
| | - Guangwei He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, 522000, Guangdong Province, People's Republic of China
| | - Hanze Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, 522000, Guangdong Province, People's Republic of China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Pudong, Shanghai, 201203, People's Republic of China
| | - Xiao Fang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China.
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, 522000, Guangdong Province, People's Republic of China.
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China.
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, 522000, Guangdong Province, People's Republic of China.
| |
Collapse
|
7
|
Hansen solubility parameters-guided mixed matrix membranes with linker-exchanged metal-organic framework fillers showing enhanced gas separation performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
8
|
Ali A, Mubashir M, Abdulrahman A, Phelan PE. Ultra-permeable intercalated metal-induced microporous polymer nano-dots rooted smart membrane for environmental remediation. CHEMOSPHERE 2022; 306:135482. [PMID: 35780984 DOI: 10.1016/j.chemosphere.2022.135482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Energy efficient CO2 separation using ultrathin smart membranes must possess efficient permeation performance, higher surface area and hydrostatic stability at industrially relevant high pressures. However, ultrathin membranes are susceptible to lower surface area, plasticization and swelling which reduces the performance at higher pressure under humidified conditions. This paper evaluates the routes for the potential intercalated effect of metal-induced microporous polymers (MMPs) dots into a cellulose-based polymer matrix to enhance promising properties, including the surface area, CO2 permeation performance, plasticization resistance and hydrostatic stability of ultrathin smart membranes at high pressure. The MMP dots-rooted smart membrane demonstrated 55 nm thickness of ultrathin selective layer with a higher surface of 220 cm2. The enhancement of CO2 permeability from 14.1 to 108.9 Barrer and CO2/CH4 ideal selectivity from 11.8 to 31.1 was observed due to the integration of MMP dots into the cellulose polymer. This result could be due to enhancement of nitrogen lone pair electron interactions with CO2 followed by amines group which improved the CO2 adsorption on the membrane surface. The MMP dots-rooted membrane demonstrated plasticization resistance up to 26 bar pressure, as compared to a pristine polymer membrane which is a percentage increase of 160% under humidified conditions. The resulting ultrathin smart membrane exhibited stable performance for a duration of 200 h under humidified conditions which confirmed the higher hydrostatic stability of the membrane. These findings confirmed the potential of MMP dots materials for the development of an industrial scale CO2 separation process using intercalated membranes.
Collapse
Affiliation(s)
- Abulhassan Ali
- Department of Chemical Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000 Kuala Lumpur, Malaysia.
| | - Aymn Abdulrahman
- Department of Chemical Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Patrick E Phelan
- School for Engineering of Matter, Transport & Energy, Arizona State University, USA
| |
Collapse
|
9
|
Cheng H. Dual-Phase Mixed Protonic-Electronic Conducting Hydrogen Separation Membranes: A Review. MEMBRANES 2022; 12:membranes12070647. [PMID: 35877850 PMCID: PMC9320335 DOI: 10.3390/membranes12070647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Owing to the excellent properties of high selectivity, high thermal stability, and low cost, in the past twenty years, mixed protonic-electronic conducting hydrogen separation membranes have received extensive attention. In particular, dual-phase mixed protonic-electronic conducting membranes with high ambipolar conductivity are more attractive because of the high hydrogen permeability. This paper aimed to present a review of research activities on the dual-phase membranes, in which the components, the characteristics, and the performances of different dual-phase membranes are introduced. The key issues that affect the membrane performance such as the elimination of the inter-phase reaction, the combination mode of the phases, the phase ratio, and the membrane configuration were discussed. The current problems and future trends were simply recommended.
Collapse
|
10
|
Vacuum-assisted continuous flow electroless plating approach for high performance Pd membrane deposition on ceramic hollow fiber lumen. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|