1
|
Metilli L, Ugo H, Chèvremont W, Picard C, Pignon F. Self-supported MOF/cellulose-nanocrystals materials designed from ultrafiltration. SOFT MATTER 2023; 19:8228-8239. [PMID: 37861338 DOI: 10.1039/d3sm00798g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Metal-organic-frameworks (MOFs) are promising materials for addressing critical issues such as petrochemical separation, water purification, energy storage and drug delivery. Their large-scale deployment, however, is hampered by a limited processability due to their powdery nature. Recently, the hybridization of MOFs with biopolymers has emerged as a greener, biocompatible strategy to shape MOFs composites into more processable membranes, films, and porous materials. In this work, cellulose nanocrystals (CNCs) were used in combination with ZIF-8 (a widely used synthetic zeolite) to produce hybrid composites through ultrafiltration. Results showed that small quantities of CNCs (1 to 20 CNC:ZIF-8 volume ratio) were sufficient to form a self-supported, dense deposit with high ZIF-8 loadings. Compared to classical MOF in situ growth strategies, this approach allowed the tuning of the composition of the final nanocomposite by controlling the nature and quantities of particles in the suspension. The fabrication of the deposit was strongly dependent on the physiochemical properties of the suspension, which were fully characterized with a set of complementary techniques, including in situ SAXS. This technique was employed to investigate the filtration process, which exhibited a homogeneous deposition of ZIF-8 particles mediated by CNC self-assembly. Finally, the available pore volume and integrity of the internal porosity of ZIF-8 were characterized by water porosimetry, demonstrating that the presence of CNCs did not alter the properties of the supported ZIF-8.
Collapse
Affiliation(s)
- Lorenzo Metilli
- University Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LRP, Grenoble F-38000, France.
| | - Héloïse Ugo
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | | | - Cyril Picard
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Frédéric Pignon
- University Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LRP, Grenoble F-38000, France.
| |
Collapse
|
2
|
Shao X, Yao G, Chen X, Qiu F, Zhang T. Dopamine modified layered double hydroxide membranes based on nanofibril architectures: Toward superior tellurium separation properties for water treatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131297. [PMID: 36989792 DOI: 10.1016/j.jhazmat.2023.131297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Two-dimensional (2D) membrane materials are widely employed for the accurate sieving of ionic contaminants and are of great importance for water reuse. However, 2D membrane materials often suffer from uneven thickness and surface defects, which severely limit their application prospects. Herein, a continuous 2D membrane (LCUM/D) was prepared using cellulose nanofibrils (CNFs) as the support backbone for the assembled layered double hydroxides (LDHs) and dopamine (DA) as the adhesive. The results demonstrated that LDHs could be uniformly distributed in the network structure of CNFs, and the defects on the membrane surface could be effectively compensated by DA. Simultaneously, the continuous LCUM/D showed excellent rejection (97.18%) and selectivity of ionic contaminants tellurium. Dopamine not only compensated for the surface defects of the 2D membrane and enhanced the rejection of tellurium, but also caused no significant loss of water permeance. Moreover, the LCUM/D exhibited stability, which facilitated its long-term application. In addition, the improved hydrophilicity allowed LCUM/D satisfactory anti-fouling properties. This study provides new dimensional insights into the fabrication of continuous 2D membranes for the removal of ionic contaminant and enhances their application prospects in wastewater treatment.
Collapse
Affiliation(s)
- Xue Shao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guanglei Yao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoping Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
3
|
Advanced Polymeric Nanocomposite Membranes for Water and Wastewater Treatment: A Comprehensive Review. Polymers (Basel) 2023; 15:polym15030540. [PMID: 36771842 PMCID: PMC9920371 DOI: 10.3390/polym15030540] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Nanomaterials have been extensively used in polymer nanocomposite membranes due to the inclusion of unique features that enhance water and wastewater treatment performance. Compared to the pristine membranes, the incorporation of nanomodifiers not only improves membrane performance (water permeability, salt rejection, contaminant removal, selectivity), but also the intrinsic properties (hydrophilicity, porosity, antifouling properties, antimicrobial properties, mechanical, thermal, and chemical stability) of these membranes. This review focuses on applications of different types of nanomaterials: zero-dimensional (metal/metal oxide nanoparticles), one-dimensional (carbon nanotubes), two-dimensional (graphene and associated structures), and three-dimensional (zeolites and associated frameworks) nanomaterials combined with polymers towards novel polymeric nanocomposites for water and wastewater treatment applications. This review will show that combinations of nanomaterials and polymers impart enhanced features into the pristine membrane; however, the underlying issues associated with the modification processes and environmental impact of these membranes are less obvious. This review also highlights the utility of computational methods toward understanding the structural and functional properties of the membranes. Here, we highlight the fabrication methods, advantages, challenges, environmental impact, and future scope of these advanced polymeric nanocomposite membrane based systems for water and wastewater treatment applications.
Collapse
|
4
|
Zuo Q, Shi H, Liu C, Peng M, Zhuang X, Geng Z, He S, Sheng X, Shao P, Yang L, Luo X. Integrated adsorptive/reductive PEDOT:PSS-based composite membranes for efficient Ag(I) rejection. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Enhanced electrochemical removal of dye wastewater by PbO2 anodes using halloysite nanotubes with different surface charge properties. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Yu C, Song J, Yan Y, Gao J, Xing W, Meng M, Yan Y, Ma Z, Wu Y. A “graphdiyne-like” anti-fouling TBBPA molecularly imprinted membrane synthesized based on the delayed phase inversion method: A concomitant permeability and selectivity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Li T, Wang Y, Wang X, Cheng C, Zhang K, Yang J, Han G, Wang Z, Wang X, Wang L. Desalination Characteristics of Cellulose Acetate FO Membrane Incorporated with ZIF-8 Nanoparticles. MEMBRANES 2022; 12:122. [PMID: 35207046 PMCID: PMC8877917 DOI: 10.3390/membranes12020122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Forward osmosis membranes have a wide range of applications in the field of water treatment. However, the application of seawater desalination is restricted, so the research of forward osmosis membranes for seawater desalination poses new challenges. In this study, zeolitic imidazolate framework-8 (ZIF-8) was synthesized by a mechanical stirring method, and its crystal structure, surface morphology, functional group characteristics, thermochemical stability, pore size distribution and specific surface area were analyzed. The cellulose acetate (CA)/ZIF-8 mixed matrix forward osmosis membrane was prepared by using the synthesized ZIF-8 as a modified additive. The effects of the additive ZIF-8 content, coagulation bath temperature, mixing temperature and heat treatment temperature on the properties of the CA/ZIF-8 forward osmosis membrane were systematically studied, and the causes were analyzed to determine the best membrane preparation parameters. The structure of the CA membrane and CA/ZIF-8 mixed matrix forward osmosis membranes prepared under the optimal conditions were characterized by Fourier Transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), contact angle and Atomic force microscope (AFM). Finally, the properties of the HTI membrane (Membrane manufactured by Hydration Technology Innovations Inc.), CA forward osmosis membrane and CA/ZIF-8 mixed matrix forward osmosis membrane were compared under laboratory conditions. For the CA membrane, the water flux and reverse salt flux reached 48.85 L·m-2·h-1 and 3.4 g·m-2·h-1, respectively. The reverse salt flux and water flux of the CA/ZIF-8 membrane are 2.84 g·m-2·h-1 and 50.14 L·m-2·h-1, respectively. ZIF-8 has a promising application in seawater desalination.
Collapse
Affiliation(s)
- Tong Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; (T.L.); (C.C.); (K.Z.); (J.Y.); (G.H.); (Z.W.)
| | - Yuhong Wang
- National Center of Ocean Standards and Metrology, Tianjin 300112, China;
| | - Xinyan Wang
- Shandong Zhaojin Motian Co., Ltd., Zhaoyuan 265400, China;
| | - Caixia Cheng
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; (T.L.); (C.C.); (K.Z.); (J.Y.); (G.H.); (Z.W.)
| | - Kaifeng Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; (T.L.); (C.C.); (K.Z.); (J.Y.); (G.H.); (Z.W.)
| | - Jie Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; (T.L.); (C.C.); (K.Z.); (J.Y.); (G.H.); (Z.W.)
| | - Guangshuo Han
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; (T.L.); (C.C.); (K.Z.); (J.Y.); (G.H.); (Z.W.)
| | - Zhongpeng Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; (T.L.); (C.C.); (K.Z.); (J.Y.); (G.H.); (Z.W.)
| | - Xiuju Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; (T.L.); (C.C.); (K.Z.); (J.Y.); (G.H.); (Z.W.)
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, China
| | - Liguo Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; (T.L.); (C.C.); (K.Z.); (J.Y.); (G.H.); (Z.W.)
| |
Collapse
|