1
|
Hossain I, Husna A, Yoo SY, Kim KI, Kang JH, Park I, Lee BK, Park HB. Tailoring the Structure-Property Relationship of Ring-Opened Metathesis Copolymers for CO 2-Selective Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26743-26756. [PMID: 38733403 DOI: 10.1021/acsami.4c02865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
In this work, we explore the use of ring-opening metathesis polymerization (ROMP) facilitated by a second-generation Grubbs catalyst (G2) for the development of advanced polymer membranes aimed at CO2 separation. By employing a novel copolymer blend incorporating 4,4'-oxidianiline (ODA), 1,6-hexanediamine (HDA), 1-adamantylamine (AA), and 3,6,9-trioxaundecylamine (TA), along with a CO2-selective poly(ethylene glycol)/poly(propylene glycol) copolymer (Jeffamine2003) and polydimethylsiloxane (PDMS) units, we have synthesized membranes under ambient conditions with exceptional CO2 separation capabilities. The strategic inclusion of PDMS, up to a 20% composition within the PEG/PPG matrix, has resulted in copolymer membranes that not only surpass the 2008 upper limit for CO2/N2 separation but also meet the commercial targets for CO2/H2 separation. Comprehensive analysis reveals that these membranes adhere to the mixing rule and exhibit percolation behavior across the entire range of compositions (0-100%), maintaining robust antiplasticization performance even under pressures up to 20 atm. Our findings underscore the potential of ROMP in creating precisely engineered membranes for efficient CO2 separation, paving the way for their application in large-scale environmental and industrial processes.
Collapse
Affiliation(s)
- Iqubal Hossain
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Asmaul Husna
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Yeon Yoo
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Kwan Il Kim
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jun Hyeok Kang
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Inho Park
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Byung Kwan Lee
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
2
|
Alebrahim T, Huang L, Welgama HK, Esmaeili N, Deng E, Cheng S, Acharya D, Doherty CM, Hill AJ, Rumsey C, Trebbin M, Cook TR, Lin H. Low-Loading Mixed Matrix Materials: Fractal-Like Structure and Peculiarly Enhanced Gas Permeability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11116-11124. [PMID: 38372265 DOI: 10.1021/acsami.3c19631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Mixed matrix materials (MMMs) containing metal-organic framework (MOF) nanoparticles are attractive for membrane carbon capture. Particularly, adding <5 mass % MOFs in polymers dramatically increased gas permeability, far surpassing the Maxwell model's prediction. However, no sound mechanisms have been offered to explain this unusual low-loading phenomenon. Herein, we design an ideal series of MMMs containing polyethers (one of the leading polymers for CO2/N2 separation) and discrete metal-organic polyhedra (MOPs) with cage sizes of 2-5 nm. Adding 3 mass % MOP-3 in a polyether increases the CO2 permeability by 100% from 510 to 1000 Barrer at 35 °C because of the increased gas diffusivity. No discernible changes in typical physical properties governing gas transport properties are detected, such as glass transition temperature, fractional free volume, d-spacing, etc. We hypothesize that this behavior is attributed to fractal-like networks formed by highly porous MOPs, and for the first time, we validate this hypothesis using small-angle X-ray scattering analysis.
Collapse
Affiliation(s)
- Taliehsadat Alebrahim
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Liang Huang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Heshali K Welgama
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Narjes Esmaeili
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Erda Deng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Shiwang Cheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Durga Acharya
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Future Industries, Private Bag 10, Clayton, South Victoria 3169, Australia
| | - Cara M Doherty
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Future Industries, Private Bag 10, Clayton, South Victoria 3169, Australia
| | - Anita J Hill
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Future Industries, Private Bag 10, Clayton, South Victoria 3169, Australia
| | - Clayton Rumsey
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Martin Trebbin
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
3
|
Zhu B, Yang Y, Guo L, Wang K, Lu Y, He X, Zhang S, Shao L. Ultrapermeable Gel Membranes Enabling Superior Carbon Capture. Angew Chem Int Ed Engl 2024; 63:e202315607. [PMID: 37983684 DOI: 10.1002/anie.202315607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Membrane technology is rapidly gaining broad attraction as a viable alternative for carbon capture to mitigate increasingly severe global warming. Emerging CO2 -philic membranes have become crucial players in efficiently separating CO2 from light gases, leveraging their exceptional solubility-selectivity characteristics. However, economic and widespread deployment is greatly dependent on the boosted performance of advanced membrane materials for carbon capture. Here, we design a unique gel membrane composed of CO2 -philic molecules for accelerating CO2 transportation over other gases for ultrapermeable carbon capture. The molecular design of such soft membranes amalgamates the advantageous traits of augmented permeation akin to liquid membranes and operational stability akin to solid membranes, effectively altering the membrane's free volume characteristics validated by both experiments and molecular dynamics simulation. Surprisingly, gas diffusion through the free-volume-tuned gel membrane undergoes a 9-fold improvement without compromising the separation factor for the superior solubility selectivity of CO2 -philic materials, and CO2 permeability achieves a groundbreaking record of 5608 Barrer surpassing the capabilities of nonfacilitated CO2 separation materials and exceeding the upper bound line established in 2019 even by leading-edge porous polymer materials. Our designed gel membrane can maintain exceptional separation performance during prolonged operation, enabling the unparalleled potential of solubility-selective next-generation materials towards sustainable carbon capture.
Collapse
Affiliation(s)
- Bin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lei Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Kaifang Wang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China
| | - Yanqiu Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Xuezhong He
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Lu Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
4
|
Zhang G, Bui V, Yin Y, Tsai EHR, Nam CY, Lin H. Carbon Capture Membranes Based on Amorphous Polyether Nanofilms Enabled by Thickness Confinement and Interfacial Engineering. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37440697 DOI: 10.1021/acsami.3c07046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Thin-film composite membranes are a leading technology for post-combustion carbon capture, and the key challenge is to fabricate defect-free selective nanofilms as thin as possible (100 nm or below) with superior CO2/N2 separation performance. Herein, we developed high-performance membranes based on an unusual choice of semi-crystalline blends of amorphous poly(ethylene oxide) (aPEO) and 18-crown-6 (C6) using two nanoengineering strategies. First, the crystallinity of the nanofilms decreases with decreasing thickness and completely disappears at 500 nm or below because of the thickness confinement. Second, polydimethylsiloxane is chosen as the gutter layer between the porous support and selective layer, and its surface is modified with bio-adhesive polydopamine (<10 nm) with an affinity toward aPEO, enabling the formation of the thin, defect-free, amorphous aPEO/C6 layer. For example, a 110 nm film containing 40 mass % C6 in aPEO exhibits CO2 permeability of 900 Barrer (much higher than a thick film with 420 Barrer), rendering a membrane with a CO2 permeance of 2200 GPU and CO2/N2 selectivity of 27 at 35 °C, surpassing Robeson's upper bound. This work shows that engineering at the nanoscale plays an important role in designing high-performance membranes for practical separations.
Collapse
Affiliation(s)
- Gengyi Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University at New York, Buffalo, New York 14260, United States
| | - Vinh Bui
- Department of Chemical and Biological Engineering, University at Buffalo, The State University at New York, Buffalo, New York 14260, United States
| | - Yifan Yin
- Department of Material Science and Chemical Engineering, Stony Brook University, The State University at New York, Stony Brook, New York 11794, United States
| | - Esther H R Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Chang-Yong Nam
- Department of Material Science and Chemical Engineering, Stony Brook University, The State University at New York, Stony Brook, New York 11794, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University at New York, Buffalo, New York 14260, United States
| |
Collapse
|
5
|
Liu J, Pan Y, Xu J, Wang Z, Zhu H, Liu G, Zhong J, Jin W. Introducing amphipathic copolymer into intermediate layer to fabricate ultra-thin Pebax composite membrane for efficient CO2 capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Jiang X, Goh K, Wang R. Air plasma assisted spray coating of Pebax-1657 thin-film composite membranes for post-combustion CO2 capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|