1
|
Shen Q, Song X, Fan J, Chen C, Guo Z. Degradation of humic acid by UV/PMS: process comparison, influencing factors, and degradation mechanism. RSC Adv 2024; 14:22988-23003. [PMID: 39040703 PMCID: PMC11261339 DOI: 10.1039/d4ra04328f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
In natural water bodies, humic acid (HA), generated during the chlorination disinfection process at water treatment plants, can produce halogenated disinfection by-products, increasing the risk to drinking water safety and posing a threat to human health. Effectively removing HA from natural waters is a critical focus of environmental research. This study established a synergistic ultraviolet/peroxymonosulfate (UV/PMS) system to remove HA from water. It compared the efficacy of various UV/advanced oxidation processes (AOPs) on HA degradation, and assessed the influence of different water sources, initial pH, oxidant concentration, and anions (HCO3 -, Cl-, NO3 -) on HA degradation. The degradation mechanism of HA by the UV/PMS process was also investigated. Results showed that under the conditions of 3 mmol L-1 PMS concentration, 10 mg L-1 HA concentration, initial solution pH of 7, and a reaction time of 240 minutes, the mineralization rate of HA by UV/PMS reached 94.15%. The pseudo-first-order kinetic constant (k obs) was 0.01034 and the single-electric energy (EE/O) was 0.0157 kW h m-3, indicating superior HA removal efficiency compared to other systems. Common anions (HCO3 -, Cl-, NO3 -) in water were found to inhibit the degradation of HA, and acidic conditions were more conducive to HA removal, with the optimal pH being 3. Free radical quenching experiments showed that both sulfate radical (SO4 -˙) and hydroxyl radical (˙OH) radicals were involved in HA degradation, with SO4 -˙ being the primary oxidant and ˙OH as the auxiliary species. Analyses using 3D-excitation-emission matrix (EEM), parallel factor analysis (PARAFAC), specific fluorescence index, and absorbance demonstrated that UV/PMS technology could effectively degrade HA in water. This study provides theoretical references for further research on the removal of HA and other organic substances using UV/PMS technology.
Collapse
Affiliation(s)
- Qingchao Shen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
| | - Xiaosan Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
| | - Jishuo Fan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
| | - Cheng Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
| | - Zili Guo
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
| |
Collapse
|
2
|
Liu H, Wang Y. Contact-Electro-Catalysis-Assisted Separation via a Dancing PTFE Membrane for Fouling Control. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1826-1836. [PMID: 38114420 DOI: 10.1021/acsami.3c14746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Advanced oxidization processes (AOPs) offer promising solutions for addressing the fouling issues in membrane separation systems. However, the high energy requirements for electrical or light power in the AOPs can be a drawback. In this study, we present a contact-electro-catalysis (CEC)-based approach for controlling membrane fouling, which is stimulated by mild ultrasonic irradiation. During this process, electrons are transferred between a dancing polytetrafluoroethylene membrane and water or oxygen molecules, resulting in the formation of free radicals •OH and •O2-. These free radicals are capable of degrading or inactivating foulants, eliminating the need for additional chemical cleaners, secondary waste disposal, or external stimuli. Furthermore, the time-dependent voltage spikes/oscillations (peak, +7.8/-8.2 V) generate a nonuniform electric field that drives dielectrophoresis, effectively keeping contaminants away from the membrane surface and further enhancing the antifouling performance of the dancing membrane. Therefore, the CEC-assisted membrane separation system offers a green and effective strategy for controlling membrane fouling through mild mechanical stimulation.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan 430074, PR China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Yan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan 430074, PR China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| |
Collapse
|
3
|
Sun Y, Lu D, Zhang H, Liu G, Hu Y, Xie H, Ma J. Titanium Oxide Electrocatalytic Membrane Filtration: "Two Faces" of Oxygen Vacancies in Generation and Transformation of Reactive Oxygen Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13226-13235. [PMID: 37602728 DOI: 10.1021/acs.est.3c03177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Oxygen vacancies are crucial to the production of reactive oxygen species (ROS) in the metal oxide electrocatalytic membrane (MOx EM) process. Here, using cathodic TiOx EM as a model, we thoroughly reveal the roles of oxygen vacancies in ROS generation and transformation. Oxygen vacancies significantly promote H2O2 and •OH production at low concentrations (increment <35%) but inhibit their production at high concentrations (increment >35%). Electrochemical analysis discloses that the enhancement of ROS production profits from the acceleration of charge transfer kinetics by both bulk and surface oxygen vacancies, whereas we attribute the decline in ROS production to the strong adsorption of ROS by surface oxygen vacancies. It is strongly supported by theoretical calculations that reveal the promoted adsorption of *OOH and *OH by oxygen vacancies, which intensifies the capture and scavenging of H2O2 and •OH. Moreover, the gradual increase of interaction time between ROS and oxygen vacancies (from ∼1 to ∼5 s) notably reduces the generation and transformation efficiency of ROS, further highlighting the detrimental impact of oxygen vacancies. In summary, oxygen vacancies show "two faces" toward ROS generation and transformation, acting as ROS promoters at low concentrations but inhibitors at high concentrations. A medium oxygen vacancy concentration is preferred for ROS production, thus causing impressive pollutant removal (>95% removal of bisphenol A within 1.2-1.5 s at 360-440 LMH). This study provides guidance on regulating ROS generation and transformation by manipulating the oxygen vacancy concentration to enhance the decontamination efficiency of MOx EMs.
Collapse
Affiliation(s)
- Yinkun Sun
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Hui Zhang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Guanjin Liu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Yichao Hu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| |
Collapse
|
4
|
Li X, Lu S, Zhang G. Three-dimensional structured electrode for electrocatalytic organic wastewater purification: Design, mechanism and role. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130524. [PMID: 36502722 DOI: 10.1016/j.jhazmat.2022.130524] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Considering the growing need in decentralized water treatment, the application of electrocatalytic processes (EP) to achieve organic wastewater purification will be dominant in the near future due to high efficiency, small reactor assembly as well as the flexibility of operation and management. The catalytic performance of electrode materials determines the development of this technology. Among them, the unique three-dimensional (3D) structure electrode shows better performance than two-dimensional (2D) electrode in increasing mass transfer, enhancing adsorption and exposing more active sites. Hence, this review starts with the introduction of definition, classification, advantages and disadvantages of 3D electrode materials. Then a critical discussion on the design and construction of 3D electrode materials for organic wastewater purification application is provided. Next, the removal mechanism of organic pollutants on the surface of 3D electrode, the role of 3D structure, the design of reactor with 3D electrode, the conversion and toxicity of degradation products, electrode energy efficiency, stability and cost, are comprehensively reviewed. At last, current challenges and future perspectives for the development of 3D electrode materials are addressed. We deem that this review will provide a valuable insight into the design and application of 3D electrodes in environmental water purification.
Collapse
Affiliation(s)
- Xuechuan Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen 518055, PR China
| | - Sen Lu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen 518055, PR China
| | - Guan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen 518055, PR China.
| |
Collapse
|
5
|
A facile synthesis of a novel Ti4O7 anode rich in oxygen defects and its electrochemical oxidation of florfenicol: Performance and mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Cui L, Zhang Y, He K, Sun M, Zhang Z. Ti4O7 reactive electrochemical membrane for humic acid removal: Insights of electrosorption and electrooxidation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Abstract
Humic acid (HA) has complex molecular structure and is capable of adsorption, ion exchange, and chelation with organic and inorganic pollutants in water bodies, worsening water quality and jeopardizing human health and ecological environment. How to effectively remove HA from water is one of the research focuses of this paper. In this study, the UV-activated sodium perborate (SPB) synergistic system (UV/SPB) was established to eliminate HA in water. The effects of initial HA concentration, SPB dose, and initial pH value on the HA elimination were determined, and the main mechanisms of the synergy and HA degradation were explored. The outcomes show that the HA elimination ratio by the sole UV and only SPB system were only 0.5% and 1.5%, respectively. The HA removal of UV/SPB reached 88.8%, which can remove HA more effectively than other systems. Free radical masking experiment proved that hydroxyl radical produced by SPB activation is the main active substance for HA removal. The results of UV-vis absorption spectrum, absorbance ratio, specific UV absorbance, and excitation–emission matrix spectroscopy verified that the UV/SPB system can effectively decompose and mineralize HA.
Collapse
|