1
|
Tanos F, Razzouk A, Lesage G, Cretin M, Bechelany M. A Comprehensive Review on Modification of Titanium Dioxide-Based Catalysts in Advanced Oxidation Processes for Water Treatment. CHEMSUSCHEM 2024; 17:e202301139. [PMID: 37987138 DOI: 10.1002/cssc.202301139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
It has become necessary to develop effective strategies to prevent and reduce water pollution as a result of the increase in dangerous pollutants in water reservoirs. Consequently, there is a need to design new catalyst materials to promote the efficiency of advanced oxidation processes (AOPs) in the field of wastewater treatment plant to ensure the mineralization of trace organic contaminants. A notable approach gaining attention involves the coupling of sulfate radicals-based AOPs to photocatalysis or electrocatalysis processes, aiming to achieve the complete removal of refractory contaminants into water and carbon dioxide. Titanium dioxide as metal oxide has received great attention for its catalytic application in water purification. TiO2 catalysts offer a multitude of advantages in AOPs. They are characterized by their high photocatalytic activity under both ultraviolet and visible light, making them environmentally friendly due to the absence of toxic byproducts during oxidation. Their versatility is remarkable, finding utility in various AOPs, from photocatalysis to photo-Fenton processes. TiO2's durability ensures long-lasting catalytic activity, which is crucial for continuous treatment processes, and their cost-effectiveness is particularly advantageous. Furthermore, their chemical stability allows it to withstand varying pH conditions. However, the large band gap energy and low electrical conductivity hinder the catalytic reaction effectiveness. This review aims to examine various approaches to enhance the catalytic performance of titanium dioxide, with the objective of enabling more efficient water purification methods.
Collapse
Affiliation(s)
- Fida Tanos
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
| | - Antonio Razzouk
- Laboratoire d'Analyses Chimiques, Faculty of Sciences, LAC-Lebanese University, Jdeidet, 90656, Lebanon
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
| | - Marc Cretin
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
- Gulf University for Science and Technology, GUST, 32093, Hawally, Kuwait
| |
Collapse
|
2
|
Liu H, Zhang X, Lv Z, Wei F, Liang Q, Qian L, Li Z, Chen X, Wu W. Ternary Heterostructure Membranes with Two-Dimensional Tunable Channels for Highly Selective Ion Separation. JACS AU 2023; 3:3089-3100. [PMID: 38034952 PMCID: PMC10685435 DOI: 10.1021/jacsau.3c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Selective ion separation from brines is pivotal for attaining high-purity lithium, a critical nonrenewable resource. Conventional methods encounter substantial challenges, driving the quest for streamlined, efficient, and swift approaches. Here, we present a graphene oxide (GO)-based ternary heterostructure membrane with a unique design. By utilizing Zn2+-induced confinement synthesis in a two-dimensional (2D) space, we incorporated two-dimensional zeolitic imidazolate framework-8 (ZIF-8) and zinc alginate (ZA) polymers precisely within layers of the GO membrane, creating tunable interlayer channels with a ternary heterostructure. The pivotal design lies in ion insertion into the two-dimensional (2D) membrane layers, achieving meticulous modulation of layer spacing based on ion hydration radius. Notably, the ensuing layer spacing within the hybrid ionic intercalation membrane occupies an intermediary realm, positioned astutely between small-sized hydrated ionic intercalation membrane spacing and their more extensive counterparts. This deliberate configuration accelerates the swift passage of diminutive hydrated ions while simultaneously impeding the movement of bulkier ions within the brine medium. The outcome is remarkable selectivity, demonstrated by the partitioning of K+/Li+ = 20.9, Na+/K+ = 31.2, and Li+/Mg2+ = 9.5 ion pairs. The ZIF-8/GO heterostructure significantly contributes to the selectivity, while the mechanical robustness and stability, improved by the ZA/GO heterostructure, further support its practical applicability. This report reports an advanced membrane design, offering promising prospects for lithium extraction and various ion separation processes.
Collapse
Affiliation(s)
- Huiling Liu
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| | - Xin Zhang
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| | - Zixiao Lv
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| | - Fang Wei
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Qing Liang
- CAS
Key Laboratory of Chemistry of Northwestern Plant Resources and Key
Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Road, Lanzhou 730000, China
| | - Lijuan Qian
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| | - Zhan Li
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| | - Ximeng Chen
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| | - Wangsuo Wu
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| |
Collapse
|
3
|
Schreiner TG, Menéndez-González M, Adam M, Popescu BO, Szilagyi A, Stanciu GD, Tamba BI, Ciobanu RC. A Nanostructured Protein Filtration Device for Possible Use in the Treatment of Alzheimer's Disease-Concept and Feasibility after In Vivo Tests. Bioengineering (Basel) 2023; 10:1303. [PMID: 38002427 PMCID: PMC10669467 DOI: 10.3390/bioengineering10111303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD), along with other neurodegenerative disorders, remains a challenge for clinicians, mainly because of the incomplete knowledge surrounding its etiology and inefficient therapeutic options. Considering the central role of amyloid beta (Aβ) in the onset and evolution of AD, Aβ-targeted therapies are among the most promising research directions. In the context of decreased Aβ elimination from the central nervous system in the AD patient, the authors propose a novel therapeutic approach based on the "Cerebrospinal Fluid Sink Therapeutic Strategy" presented in previous works. This article aims to demonstrate the laborious process of the development and testing of an effective nanoporous ceramic filter, which is the main component of an experimental device capable of filtrating Aβ from the cerebrospinal fluid in an AD mouse model. METHODS First, the authors present the main steps needed to create a functional filtrating nanoporous ceramic filter, which represents the central part of the experimental filtration device. This process included synthesis, functionalization, and quality control of the functionalization, which were performed via various spectroscopy methods and thermal analysis, selectivity measurements, and a biocompatibility assessment. Subsequently, the prototype was implanted in APP/PS1 mice for four weeks, then removed, and the nanoporous ceramic filter was tested for its filtration capacity and potential structural damages. RESULTS In applying the multi-step protocol, the authors developed a functional Aβ-selective filtration nanoporous ceramic filter that was used within the prototype. All animal models survived the implantation procedure and had no significant adverse effects during the 4-week trial period. Post-treatment analysis of the nanoporous ceramic filter showed significant protein loading, but no complete clogging of the pores. CONCLUSIONS We demonstrated that a nanoporous ceramic filter-based system that filtrates Aβ from the cerebrospinal fluid is a feasible and safe treatment modality in the AD mouse model. The presented prototype has a functional lifespan of around four weeks, highlighting the need to develop advanced nanoporous ceramic filters with anti-biofouling properties to ensure the long-term action of this therapy.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Manuel Menéndez-González
- Department of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Department of Neurology, Hospital Universitario Central de Asturias, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, 33006 Oviedo, Spain
| | - Maricel Adam
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Andrei Szilagyi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Str., No. 16, 700155 Iasi, Romania
| | - Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Str., No. 16, 700155 Iasi, Romania
| | - Bogdan Ionel Tamba
- Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Str., No. 16, 700155 Iasi, Romania
| | - Romeo Cristian Ciobanu
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| |
Collapse
|
4
|
Chen M, Nijboer MP, Kovalgin AY, Nijmeijer A, Roozeboom F, Luiten-Olieman MWJ. Atmospheric-pressure atomic layer deposition: recent applications and new emerging applications in high-porosity/3D materials. Dalton Trans 2023. [PMID: 37376785 PMCID: PMC10392469 DOI: 10.1039/d3dt01204b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Atomic layer deposition (ALD) is a widely recognized technique for depositing ultrathin conformal films with excellent thickness control at Ångström or (sub)monolayer level. Atmospheric-pressure ALD is an upcoming ALD process with a potentially lower ownership cost of the reactor. In this review, we provide a comprehensive overview of the recent applications and development of ALD approaches emphasizing those based on operation at atmospheric pressure. Each application determines its own specific reactor design. Spatial ALD (s-ALD) has been recently introduced for the commercial production of large-area 2D displays, the surface passivation and encapsulation of solar cells and organic light-emitting diode (OLED) displays. Atmospheric temporal ALD (t-ALD) has opened up new emerging applications such as high-porosity particle coatings, functionalization of capillary columns for gas chromatography, and membrane modification in water treatment and gas purification. The challenges and opportunities for highly conformal coating on porous substrates by atmospheric ALD have been identified. We discuss in particular the pros and cons of both s-ALD and t-ALD in combination with their reactor designs in relation to the coating of 3D and high-porosity materials.
Collapse
Affiliation(s)
- M Chen
- Inorganic Membranes, Department of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - M P Nijboer
- Inorganic Membranes, Department of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - A Y Kovalgin
- Integrated Devices and Systems, Faculty of Electrical Engineering, Mathematics and Computer Science, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - A Nijmeijer
- Inorganic Membranes, Department of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - F Roozeboom
- Inorganic Membranes, Department of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - M W J Luiten-Olieman
- Inorganic Membranes, Department of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
5
|
Yamaguchi T, Kim T, Park JK, Oh JM. Time-Dependent Controlled Release of Ferulic Acid from Surface-Modified Hollow Nanoporous Silica Particles. Int J Mol Sci 2023; 24:10560. [PMID: 37445736 DOI: 10.3390/ijms241310560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Release of ferulic acid from surface-functionalized hollow nanoporous silica particles (HNSPs) was investigated in deionized water (DI water) and in ethanol. The host material, an HNSP, was synthesized in the presence of polymer and surfactant templates, and the pore as well as the surface were modified with either pentyltriethoxysilane (PTS) or octyltriethoxysilane (OTS) through silane coupling reactions. The inner hollow space occupied a volume of ~45% of the whole HNSP with a 2.54 nm pore channel in the wall. The pore size was estimated to decrease to 1.5 nm and 0.5 nm via the PTS and OTS functionalization, respectively. The encapsulation efficiencies of the HNSP (25 wt%), PTS-functionalized HNSP (PTS-HNSP, 22 wt%) and OTS-functionalized HNSP (OST-HNSP, 25 wt%) toward ferulic acid were similar, while the %release in DI water and ethanol varied following HNSP > PTS-HNSP > OTS-HNSP. Release kinetic analyses with Korsmeyer-Peppas fitting suggested a trade-off relationship between the solvent's ability to access the HNSP and the affinity of ferulic acid to the surface, allowing us to understand the solvent's controlled release rate and mechanism.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Taeho Kim
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Jin-Kuen Park
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
6
|
Prasanna NS, Choudhary N, Singh N, Raghavarao KSMS. Omniphobic membranes in membrane distillation for desalination applications: A mini-review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
|
7
|
Behroozi AH, Vatanpour V, Meunier L, Mehrabi M, Koupaie EH. Membrane Fabrication and Modification by Atomic Layer Deposition: Processes and Applications in Water Treatment and Gas Separation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36898166 DOI: 10.1021/acsami.2c22627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Membrane-based separation processes are part of most water purification plants worldwide. Industrial separation applications, primarily water purification and gas separation, can be improved with novel membranes or modification to existing ones. Atomic layer deposition (ALD) is an emerging technique that is proposed to upgrade certain kinds of membranes independent of their chemistry and morphology. ALD deposits thin, defect-free, angstrom-scale, and uniform coating layers on a substrate's surface by reacting with gaseous precursors. The surface-modifying effects of ALD are described in the present review, followed by a description of various types of inorganic and organic barrier films and how these can be used in combination with ALD. The role of ALD in membrane fabrication and modification is categorized into different membrane-based groups according to the treated medium, i.e., water or gas. In all membrane types, the ALD-based direct deposition of inorganic materials, mainly metal oxides, on the membrane surface can improve antifouling, selectivity, permeability, and hydrophilicity. Therefore, the ALD technique can broaden the applications of membranes to the treatment of emerging contaminants in water and air. Finally, the advancement, limitations, and challenges of ALD-based membrane fabrication and modification are compared to provide a comprehensive guideline for developing next-generation membranes with improved filtration and separation performance.
Collapse
Affiliation(s)
- Amir Hossein Behroozi
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul Turkey
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Louise Meunier
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| | - Mohammad Mehrabi
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Ehssan H Koupaie
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| |
Collapse
|
8
|
Han L, Shen L, Lin H, Huang Z, Xu Y, Li R, Li B, Chen C, Yu W, Teng J. 3D printing titanium dioxide-acrylonitrile-butadiene-styrene (TiO 2-ABS) composite membrane for efficient oil/water separation. CHEMOSPHERE 2023; 315:137791. [PMID: 36623602 DOI: 10.1016/j.chemosphere.2023.137791] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The oily water treatment is becoming one of the hottest topics due to that increase of offshore oil transportation and the various accident oil leakages. In this study, a functional TiO2-ABS composite membrane was generated through the three-dimensional (3D) printing strategy for the first time and was conducted to simulated oily water treatment. The TiO2-ABS composite membrane demonstrated a significant promotion in hydrophilicity and oleophobicity which were evidenced by the water contact angle of 14.8° and the underwater oil contact angle of 144.7°, respectively. The optimal modified membrane had both exceedingly high flux (1.8 × 105 L m-2·h-1) and oil rejection rate (99.5%). Moreover, the results of filtration cycles of 10 days and extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory demonstrated that the modified membranes took possession of excellent stability and antifouling property. What was more, the TiO2-ABS composite membrane revealed over 99% rejection to all five types of oil/water systems. The interestingly experimental results indicated that the prepared membrane possessed a broad development trend and application prospect in the field of oily water treatment.
Collapse
Affiliation(s)
- Lei Han
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zhengyi Huang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Wei Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
9
|
Paras, Yadav K, Kumar P, Teja DR, Chakraborty S, Chakraborty M, Mohapatra SS, Sahoo A, Chou MMC, Liang CT, Hang DR. A Review on Low-Dimensional Nanomaterials: Nanofabrication, Characterization and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:160. [PMID: 36616070 PMCID: PMC9824826 DOI: 10.3390/nano13010160] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 09/02/2023]
Abstract
The development of modern cutting-edge technology relies heavily on the huge success and advancement of nanotechnology, in which nanomaterials and nanostructures provide the indispensable material cornerstone. Owing to their nanoscale dimensions with possible quantum limit, nanomaterials and nanostructures possess a high surface-to-volume ratio, rich surface/interface effects, and distinct physical and chemical properties compared with their bulk counterparts, leading to the remarkably expanded horizons of their applications. Depending on their degree of spatial quantization, low-dimensional nanomaterials are generally categorized into nanoparticles (0D); nanorods, nanowires, and nanobelts (1D); and atomically thin layered materials (2D). This review article provides a comprehensive guide to low-dimensional nanomaterials and nanostructures. It begins with the classification of nanomaterials, followed by an inclusive account of nanofabrication and characterization. Both top-down and bottom-up fabrication approaches are discussed in detail. Next, various significant applications of low-dimensional nanomaterials are discussed, such as photonics, sensors, catalysis, energy storage, diverse coatings, and various bioapplications. This article would serve as a quick and facile guide for scientists and engineers working in the field of nanotechnology and nanomaterials.
Collapse
Affiliation(s)
- Paras
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Kushal Yadav
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Prashant Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Dharmasanam Ravi Teja
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Sudipto Chakraborty
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Monojit Chakraborty
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | | | - Abanti Sahoo
- Department of Chemical Engineering, National Institute of Technology, Rourkela 769008, India
| | - Mitch M. C. Chou
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chi-Te Liang
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, National Taiwan University, Taipei 10617, Taiwan
| | - Da-Ren Hang
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
10
|
Niu X, Dong G, Li D, Zhang Y, Zhang Y. Atomic layer deposition modified PIM-1 membranes for improved CO2 separation: A comparative study on the microstructure-performance relationships. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Selective separation and purification of ReO4- by temperature-sensitive imprinted polymer with porous interconnected network structure. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
PTFE porous membrane technology: A comprehensive review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
13
|
Stafford CM, Guan X, Qi Y, Zhang Y, Liu X. Tuning the surface functionality of polyamide films via termination reaction in molecular layer-by-layer deposition. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Fernández JG, Martínez VV, de la Prida Pidal VM. Special Issue "ALD Technique for Functional Coatings of Nanostructured Materials". NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3489. [PMID: 36234616 PMCID: PMC9565319 DOI: 10.3390/nano12193489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Atomic layer deposition (ALD) is a vapor-phase technique that consists of the alternation of separated self-limiting surface reactions, which enable film thickness to be accurately controlled at the angstrom level, based on the former atomic layer epitaxy method [...].
Collapse
Affiliation(s)
- Javier Garcia Fernández
- Departamento de Física, Facultad de Ciencias, Universidad de Oviedo, C/Federico García Lorca nº 18, 33007 Oviedo, Spain
| | - Victor Vega Martínez
- Laboratorio de Membranas Nanoporosas, Edificio de Servicios Científico Técnicos “Severo Ochoa”, Universidad de Oviedo, C/Fernando Bonguera s/n, 33006 Oviedo, Spain
| | | |
Collapse
|
15
|
Nanoporous Membranes for the Filtration of Proteins from Biological Fluids: Biocompatibility Tests on Cell Cultures and Suggested Applications for the Treatment of Alzheimer's Disease. J Clin Med 2022; 11:jcm11195846. [PMID: 36233713 PMCID: PMC9571538 DOI: 10.3390/jcm11195846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Alzheimer's disease has a significant epidemiological and socioeconomic impact, and, unfortunately, the extensive research focused on potential curative therapies has not yet proven to be successful. However, in recent years, important steps have been made in the development and functionalization of nanoporous alumina membranes, which might be of great interest for medical use, including the treatment of neurodegenerative diseases. In this context, the aim of this article is to present the synthesis and biocompatibility testing of a special filtrating nano-membrane, which is planned to be used in an experimental device for Alzheimer's disease treatment. METHODS Firstly, the alumina nanoporous membrane was synthesized via the two-step anodizing process in oxalic acid-based electrolytes and functionalized via the atomic layer deposition technique. Subsequently, quality control tests (spectrophotometry and potential measurements), toxicity, and biocompatibility tests (cell viability assays) were conducted. RESULTS The proposed alumina nanoporous membrane proved to be efficient for amyloid-beta filtration according to the permeability studies conducted for 72 h. The proposed membrane has proven to be fully compatible with the tested cell cultures. CONCLUSIONS The proposed alumina nanoporous membrane model is safe and could be incorporated into implantable devices for further in vivo experiments and might be an efficient therapeutic approach for Alzheimer's disease.
Collapse
|
16
|
Gu H, Lee DT, Corkery P, Miao Y, Kim J, Yuan Y, Xu Z, Dai G, Parsons GN, Kevrekidis IG, Zhuang L, Tsapatsis M. Modeling of deposit formation in mesoporous substrates via atomic layer deposition: insights from pore‐scale simulation. AIChE J 2022. [DOI: 10.1002/aic.17889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hao Gu
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road Shanghai China
| | - Dennis T. Lee
- Department of Chemical and Biomolecular Engineering Johns Hopkins University, 3400 N. Charles Street Baltimore Maryland USA
- Institute for NanoBio Technology, Johns Hopkins University, 3400 N. Charles Street Baltimore Maryland USA
| | - Peter Corkery
- Department of Chemical and Biomolecular Engineering Johns Hopkins University, 3400 N. Charles Street Baltimore Maryland USA
- Institute for NanoBio Technology, Johns Hopkins University, 3400 N. Charles Street Baltimore Maryland USA
| | - Yurun Miao
- Department of Chemical and Biomolecular Engineering Johns Hopkins University, 3400 N. Charles Street Baltimore Maryland USA
- Institute for NanoBio Technology, Johns Hopkins University, 3400 N. Charles Street Baltimore Maryland USA
| | - Jung‐Sik Kim
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh North Carolina USA
| | - Yuchen Yuan
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road Shanghai China
| | - Zhen‐liang Xu
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road Shanghai China
| | - Gance Dai
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road Shanghai China
| | - Gregory N. Parsons
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh North Carolina USA
| | - Ioannis G. Kevrekidis
- Department of Chemical and Biomolecular Engineering Johns Hopkins University, 3400 N. Charles Street Baltimore Maryland USA
| | - Liwei Zhuang
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road Shanghai China
| | - Michael Tsapatsis
- Department of Chemical and Biomolecular Engineering Johns Hopkins University, 3400 N. Charles Street Baltimore Maryland USA
- Institute for NanoBio Technology, Johns Hopkins University, 3400 N. Charles Street Baltimore Maryland USA
- Applied Physics Laboratory Johns Hopkins University, 11100 Johns Hopkins Road Laurel MD USA
| |
Collapse
|