1
|
Pedroso de Lima F, Costa M, Sousa A, Proença MF. The Chromenopyridine Scaffold: A Privileged Platform in Drug Design. Molecules 2024; 29:3004. [PMID: 38998955 PMCID: PMC11243271 DOI: 10.3390/molecules29133004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The chromenopyridine scaffold represents an important class of heterocyclic compounds exhibiting a broad spectrum of biological properties. This review describes novel and efficient procedures for the synthesis of this scaffold. Herein, several methods were detailed and grouped according to their starting material (e.g., salicylaldehydes, chromones, chromanones and coumarins) and respective biological activity, when reported. This review highlights the potential of the reported synthetic strategies for preparing chromenopyridine derivatives with promising biological activity, paving the way for further developments in drug discovery.
Collapse
Affiliation(s)
- Fábio Pedroso de Lima
- Chemistry Centre, School of Sciences, University of Minho, Gualtar Campus, 4715-303 Braga, Portugal
- Centre for Textile Science and Technology (2C2T), University of Minho, Azurém Campus, 4800-058 Guimarães, Portugal
| | - Marta Costa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Gualtar Campus, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Ana Sousa
- Chemistry Centre, School of Sciences, University of Minho, Gualtar Campus, 4715-303 Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), University of Minho, Gualtar Campus, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Maria Fernanda Proença
- Chemistry Centre, School of Sciences, University of Minho, Gualtar Campus, 4715-303 Braga, Portugal
| |
Collapse
|
2
|
Zhou W, Gan J, Li H, Wang C. ZnCl 2-Promoted Three-Component Reaction of 2-Aminochromenones, Aromatic Aldehydes, and Quinone Monoketals: Access to 5,6-Dihydro-12 H-chromeno[2,3- c]isoquinolin-12-one Derivatives. J Org Chem 2023; 88:14767-14774. [PMID: 37820027 DOI: 10.1021/acs.joc.3c01405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A three-component reaction of 2-amino-4H-chromen-4-ones, aromatic aldehydes, and 4,4-dialkoxycyclohexa-2,5-dien-1-ones for the concise synthesis of chromeno[2,3-c]dihydroisoquinoline derivatives has been investigated. This reaction involved consecutive ZnCl2-promoted Micheal addition and intramolecular Friedel-Crafts alkylation. This synthetic protocol offered several advantages, including the readily accessible starting materials, good functional group tolerance, and simplicity of operation. Additionally, the structures of products obtained were determined based on X-ray diffraction studies.
Collapse
Affiliation(s)
- Wenyan Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Jianbo Gan
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Haiwen Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| |
Collapse
|
3
|
Brandner L, Müller TJJ. Multicomponent synthesis of chromophores – The one-pot approach to functional π-systems. Front Chem 2023; 11:1124209. [PMID: 37007054 PMCID: PMC10065161 DOI: 10.3389/fchem.2023.1124209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 03/19/2023] Open
Abstract
Multicomponent reactions, conducted in a domino, sequential or consecutive fashion, have not only considerably enhanced synthetic efficiency as one-pot methodology, but they have also become an enabling tool for interdisciplinary research. The highly diversity-oriented nature of the synthetic concept allows accessing huge structural and functional space. Already some decades ago this has been recognized for life sciences, in particular, lead finding and exploration in pharma and agricultural chemistry. The quest for novel functional materials has also opened the field for diversity-oriented syntheses of functional π-systems, i.e. dyes for photonic and electronic applications based on their electronic properties. This review summarizes recent developments in MCR syntheses of functional chromophores highlighting syntheses following either the framework forming scaffold approach by establishing connectivity between chromophores or the chromogenic chromophore approach by de novo formation of chromophore of interest. Both approaches warrant rapid access to molecular functional π-systems, i.e. chromophores, fluorophores, and electrophores for various applications.
Collapse
|
4
|
Abstract
Dimethyl sulfoxide (DMSO) is a cheap polar aprotic solvent used in organic synthesis and in pharmacology because of its low cost, high stability, and non-toxicity. Multicomponent reactions (MCRs) are highly convergent processes and have good atom, step, and pot economies. In this communication, the multicomponent transformation of salicylaldehyde, malononitrile dimer, and nitromethane in DMSO at room temperature was investigated to give 2,4-diamino-5-(nitromethyl)-5H-chromeno[2,3-b]pyridine-3-carbonitrile in good yield. The structure of the earlier unknown compound was confirmed by means of elemental analysis, mass-, nuclear magnetic resonance, and infrared spectroscopy.
Collapse
|
5
|
Elinson MN, Ryzhkova YE, Ryzhkov FV. Multicomponent design of chromeno[2,3-b]pyridine systems. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4972] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review summarizes and systematizes data on the methods for the preparation of chromeno[2,3-b]pyridines. Both multicomponent and pseudo-multicomponent synthetic approaches and one-pot transformations based on the reactions of carbonyl compounds, malononitrile or its derivatives, and CH-acids are considered. Examples of the use of various catalysts, microwave and ultrasonic radiation, as well as electric current for the implementation of multicomponent transformations of this type are given. Characteristic features of the course and mechanisms of reactions are discussed. Data on the biological activity of the obtained compounds and on other fields of application of such heterocyclic systems are presented.
The bibliography includes 109 references.
Collapse
|
6
|
Yue X, Festa AA, Storozhenko OA, Varlamov AV, Subramani K, Boccarelli A, Purgatorio R, Altomare CD, Voskressensky LG. Reductive domino reaction to access chromeno[2,3-c]isoquinoline-5-amines with antiproliferative activities against human tumor cells. Bioorg Chem 2020; 104:104169. [PMID: 32920352 DOI: 10.1016/j.bioorg.2020.104169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/04/2020] [Accepted: 08/03/2020] [Indexed: 01/09/2023]
Abstract
An interaction of homophthalonitrile with salicylaldehydes proceeds as a novel domino reaction and results in the formation of nineteen 12H-chromeno[2,3-c]isoquinoline-5-amine derivatives. Four new bonds and two cycles are forged in a single synthetic operation, employing cheap and eco-friendly ammonium formate, acting both as a catalyst and a reducing agent. The in vitro cytotoxicity tests revealed antiproliferative activities against five human tumor cell lines, including the cisplatin-resistant ovarian carcinoma one (A2780cp8), with inhibitory potency data (IC50) in the low micromolar range in most cases. Molecular docking calculations and fluorescence quenching studies revealed possible binding properties with DNA of the active compounds.
Collapse
Affiliation(s)
- Xiaoyi Yue
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, Moscow, Russia
| | - Alexey A Festa
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, Moscow, Russia
| | - Olga A Storozhenko
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, Moscow, Russia
| | - Alexey V Varlamov
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, Moscow, Russia
| | - Karthikeyan Subramani
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, Moscow, Russia
| | - Angelina Boccarelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Rosa Purgatorio
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Cosimo D Altomare
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Leonid G Voskressensky
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, Moscow, Russia
| |
Collapse
|
7
|
Synthesis of 2-aminochromene derivatives from 1-(2-imino-2H-chromen-3-yl)pyridin-1-ium perchlorates and nitromethane in basic medium. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Yue X, Storozhenko OA, Festa AA, Sorokina EA, Varlamov AV, Voskressensky LG. Microwave-assisted sequential three-component synthesis of pyrrolyl-substituted chromeno[2,3-c]isoquinolin-5-amines. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02686-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Festa AA, Storozhenko OA, Golantsov NE, Subramani K, Novikov RA, Zaitseva SO, Baranov MS, Varlamov AV, Voskressensky LG. Homophtalonitrile for Multicomponent Reactions: Syntheses and Optical Properties of o-Cyanophenyl- or Indol-3-yl-Substituted Chromeno[2,3- c]isoquinolin-5-Amines. ChemistryOpen 2019; 8:23-30. [PMID: 30652060 PMCID: PMC6331947 DOI: 10.1002/open.201800207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Indexed: 11/17/2022] Open
Abstract
Malononitrile is a useful reagent for multicomponent reactions with hundreds of methods developed. In this paper, we suggest α‐(cyano)‐o‐tolunitrile (homophtalonitrile) to work as a vinylogous malononitrile. Thus, a organocatalytic pseudo‐three‐component reaction of homopthalonitrile (2 equiv) and o‐hydroxybenzaldehyde, leading to the diastereoselective formation of 5‐amino‐12H‐chromeno[2,3‐c]isoquinolin‐12‐yl)(cyano)methyl)benzonitriles, was discovered. The possibility to employ other nucleophiles was demonstrated for indoles, and a sequential three‐component reaction of homophtalonitrile, o‐hydroxybenzaldehyde, and (aza)indole, giving 12‐(1H‐Indol‐3‐yl)‐12H‐chromeno[2,3‐c]isoquinolin‐5‐amines, was developed. The photophysical properties of the synthesized compounds have been studied, revealing high fluorescence quantum yields (42–70 %) for indol‐3‐yl substituted 12H‐chromeno[2,3‐c]isoquinolin‐5‐amines and reversible fluorescence quenching under acidic conditions.
Collapse
Affiliation(s)
- Alexey A Festa
- Organic Chemistry Department, Science Faculty RUDN University Miklukho-Maklaya st. 6 117198 Moscow Russian Federation
| | - Olga A Storozhenko
- Organic Chemistry Department, Science Faculty RUDN University Miklukho-Maklaya st. 6 117198 Moscow Russian Federation
| | - Nikita E Golantsov
- Organic Chemistry Department, Science Faculty RUDN University Miklukho-Maklaya st. 6 117198 Moscow Russian Federation
| | - Karthikeyan Subramani
- Organic Chemistry Department, Science Faculty RUDN University Miklukho-Maklaya st. 6 117198 Moscow Russian Federation
| | - Roman A Novikov
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences Vavilova st., 32 119991 Moscow Russian Federation
| | - Snezhana O Zaitseva
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russian Federation
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russian Federation.,Pirogov Russian National Research Medical University Ostrovitianov 1 117997 Moscow Russian Federation
| | - Alexey V Varlamov
- Organic Chemistry Department, Science Faculty RUDN University Miklukho-Maklaya st. 6 117198 Moscow Russian Federation
| | - Leonid G Voskressensky
- Organic Chemistry Department, Science Faculty RUDN University Miklukho-Maklaya st. 6 117198 Moscow Russian Federation
| |
Collapse
|
10
|
Storozhenko OA, Festa AA, Bella Ndoutoume DR, Aksenov AV, Varlamov AV, Voskressensky LG. Mn-mediated sequential three-component domino Knoevenagel/cyclization/Michael addition/oxidative cyclization reaction towards annulated imidazo[1,2- a]pyridines. Beilstein J Org Chem 2019; 14:3078-3087. [PMID: 30643585 PMCID: PMC6317425 DOI: 10.3762/bjoc.14.287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
The sequential three-component reaction between o-hydroxybenzaldehydes, N-(cyanomethyl)pyridinium salts and a nucleophile towards substituted chromenoimidazopyridines under oxidative conditions has been developed. The employment of Mn(OAc)3·2H2O or KMnO4 as stoichiometric oxidants allowed the use of a wide range of nucleophiles, such as nitromethane, (aza)indoles, pyrroles, phenols, pyrazole, indazole and diethyl malonate. The formation of the target compounds presumably proceeds through a domino Knoevenagel/cyclization/Michael addition/oxidative cyclization reaction sequence.
Collapse
Affiliation(s)
- Olga A Storozhenko
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russian Federation
| | - Alexey A Festa
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russian Federation
| | - Delphine R Bella Ndoutoume
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russian Federation
| | - Alexander V Aksenov
- Department of Chemistry, North Caucasus Federal University, Pushkin st. 1a, 355009 Stavropol, Russian Federation
| | - Alexey V Varlamov
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russian Federation
| | - Leonid G Voskressensky
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russian Federation
| |
Collapse
|
11
|
Pazhanivel L, Gnanasambandam V. Design and synthesis of benzothiazole/thiophene-4 H-chromene hybrids. RSC Adv 2018; 8:41675-41680. [PMID: 35558789 PMCID: PMC9091940 DOI: 10.1039/c8ra08262f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/12/2018] [Indexed: 11/21/2022] Open
Abstract
A library of 4H-chromene derivatives with heterocyclic substituent's at the 3 and 4-positions was synthesized in a convenient DBU catalysed three component synthesis between salicylaldehyde, acetonitrile derivatives and thiazolidinedione to afford 2-amino-3-benzothiazole-4-heterocycle-4H-chromenes and 2-amino-3-thiophenoyl-4-heterocycle-4H-chromenes derivatives in ethanol and a mixture of ethanol and water (1 : 1) at room temperature. The significance of this protocol is the feasibility of incorporating substituents simultaneously at the 3 and 4 positions of 4H-chromenes in an efficient three component reaction.
Collapse
|