1
|
Kurmaz SV, Komendant RI, Perepelitsina EO, Kurmaz VA, Khodos II, Emelyanova NS, Filatova NV, Amozova VI, Balakina AA, Terentyev AA. New Amphiphilic Terpolymers of N-Vinylpyrrolidone with Acrylic Acid and Triethylene Glycol Dimethacrylate as Promising Drug Delivery: Design, Synthesis and Biological Properties In Vitro. Int J Mol Sci 2024; 25:8422. [PMID: 39125990 PMCID: PMC11312434 DOI: 10.3390/ijms25158422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
The terpolymers of N-vinylpyrrolidone (VP) with acrylic acid and triethylene glycol methacrylate were synthesized with more than 90% yield by radical copolymerization in ethanol from monomeric mixtures of different molar composition (98:2:2, 95:5: 2 and 98:2:5) and their monomer composition, absolute molecular masses and hydrodynamic radii in aqueous media were determined. Using the MTT test, these terpolymers were established to be low toxic for non-tumor Vero cells and HeLa tumor cells. Polymer compositions of hydrophobic dye methyl pheophorbide a (MPP) based on studied terpolymers and linear polyvinylpyrrolidone (PVP) were obtained and characterized in water solution. Quantum-chemical modeling of the MPP-copolymer structures was conducted, and the possibility of hydrogen bond formation between terpolymer units and the MPP molecule was shown. Using fluorescence microscopy, the accumulation and distribution of polymer particles in non-tumor (FetMSC) and tumor (HeLa) cells was studied, and an increase in the accumulation of MPP with both types of particles was found.
Collapse
Affiliation(s)
- Svetlana V. Kurmaz
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Roman I. Komendant
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Evgenia O. Perepelitsina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Vladimir A. Kurmaz
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Igor I. Khodos
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Nina S. Emelyanova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Natalia V. Filatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Vera I. Amozova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Anastasia A. Balakina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Alexey A. Terentyev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| |
Collapse
|
2
|
Kurmaz VA, Konev DV, Kurmaz SV, Emel’yanova NS. Electrochemical Study of the Antitumor Antibiotic Doxorubicin in Its Free Form and Encapsulated in a Biocompatible Copolymer of N-Vinylpyrrolidone and (di)Methacrylates. RUSS J ELECTROCHEM+ 2024; 60:321-337. [DOI: 10.1134/s1023193524040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 01/06/2025]
|
3
|
Kurmaz SV, Perepelitsina EO, Vasiliev SG, Avilova IA, Khodos II, Kurmaz VA, Chernyaev DA, Soldatova YV, Filatova NV, Faingold II. Macromolecular Design and Engineering of New Amphiphilic N-Vinylpyrrolidone Terpolymers for Biomedical Applications. Int J Mol Sci 2023; 24:15170. [PMID: 37894851 PMCID: PMC10607074 DOI: 10.3390/ijms242015170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
New amphiphilic VP-(di)methacrylate terpolymers of different monomer compositions and topologies have been synthesized by radical polymerization in toluene without any growth regulator of polymer chains. Their structures and properties in solid state and water solution were studied by double-detector size-exclusion chromatography; IR-, 1H, and 13C NMR-spectroscopy; DLS, TEM, TG, and DSC methods. The composition of the VP-AlkMA-TEGDM monomer mixture has been established to regulate the topology of the resulting macromolecules. The studied terpolymers presented on TEM images as individual low-contrast particles and their conglomerates of various sizes with highly ordered regions; in general, they are amorphous structures. None of the terpolymers demonstrated cytotoxic effects for noncancerous Vero and tumor HeLa cells. Hydrophobic D-α-tocopherol (TP) was encapsulated in terpolymer nanoparticles (NPs), and its antioxidant activity was evaluated by ABTS (radical monocation 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)) or DPPH (2,2'-diphenyl-1-picrylhydrazyl) methods. The reaction efficiency depends on the TP-NP type. The IC50 values for the decolorization reaction of ABTS•+ and DPPH inhibition in the presence of initial and encapsulated TP were obtained.
Collapse
Affiliation(s)
- Svetlana V. Kurmaz
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Evgenia O. Perepelitsina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Sergey G. Vasiliev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Irina A. Avilova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Igor I. Khodos
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Vladimir A. Kurmaz
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Dmitry A. Chernyaev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Yuliya V. Soldatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Natalia V. Filatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Irina I. Faingold
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| |
Collapse
|
4
|
Soldatova YV, Faingold II, Poletaeva DA, Kozlov AV, Emel'yanova NS, Khodos II, Chernyaev DA, Kurmaz SV. Design and Investigation of New Water-Soluble Forms of α-Tocopherol with Antioxidant and Antiglycation Activity Using Amphiphilic Copolymers of N-Vinylpyrrolidone. Pharmaceutics 2023; 15:pharmaceutics15051388. [PMID: 37242630 DOI: 10.3390/pharmaceutics15051388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Water-soluble forms of α-tocopherol (TP) as an effective antioxidant were obtained by encapsulating it into nanoparticles (NPs) of amphiphilic copolymers of N-vinylpyrrolidone with triethylene glycol dimethacrylate (CPL1-TP) and N-vinylpyrrolidone with hexyl methacrylate and triethylene glycol dimethacrylate (CPL2-TP) synthesized by radical copolymerization in toluene. The hydrodynamic radii of NPs loaded with TP (3.7 wt% per copolymers) were typically ca. 50 or 80 nm depending on copolymer composition, media, and temperature. Characterization of NPs was accomplished by transmission electron microscopy (TEM), IR-, and 1H NMR spectroscopy. Quantum chemical modeling showed that TP molecules are capable to form hydrogen bonds with donor groups of the copolymer units. High antioxidant activity of both obtained forms of TP has been found by the thiobarbituric acid reactive species and chemiluminescence assays. CPL1-TP and CPL2-TP effectively inhibited the process of spontaneous lipid peroxidation as well as α-tocopherol itself. The IC50 values of luminol chemiluminescence inhibition were determined. Antiglycation activity against vesperlysine and pentosidine-like AGEs of TP water-soluble forms was shown. The developed NPs of TP are promising as materials with antioxidant and antiglycation activity and can be used in various biomedical applications.
Collapse
Affiliation(s)
- Yuliya V Soldatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, 142432 Chernogolovka, Russia
| | - Irina I Faingold
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, 142432 Chernogolovka, Russia
| | - Darya A Poletaeva
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, 142432 Chernogolovka, Russia
| | - Alexei V Kozlov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, 142432 Chernogolovka, Russia
| | - Nina S Emel'yanova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, 142432 Chernogolovka, Russia
| | - Igor I Khodos
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, Institutskaya Street, 6, 142432 Chernogolovka, Russia
| | - Dmitry A Chernyaev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, 142432 Chernogolovka, Russia
| | - Svetlana V Kurmaz
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, 142432 Chernogolovka, Russia
| |
Collapse
|
5
|
Kurmaz SV, Ivanova II, Emelyanova NS, Konev DV, Kurmaz VA, Filatova NV, Balakina AA, Terentiev AA. Doxorubicin compositions with biocompatible terpolymer of N-vinylpyrrolidone, methacrylic acid and triethylene glycol dimethacrylate. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
6
|
Rybkin AY, Kurmaz SV, Urakova EA, Filatova NV, Sizov LR, Kozlov AV, Koifman MO, Goryachev NS. Nanoparticles of N-Vinylpyrrolidone Amphiphilic Copolymers and Pheophorbide a as Promising Photosensitizers for Photodynamic Therapy: Design, Properties and In Vitro Phototoxic Activity. Pharmaceutics 2023; 15:pharmaceutics15010273. [PMID: 36678902 PMCID: PMC9863766 DOI: 10.3390/pharmaceutics15010273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
A series of nanoparticles (NPs) with a hydrodynamic radius from 20 to 100 nm in PBS was developed over the solubilization of hydrophobic dye methyl pheophorbide a (chlorin e6 derivative) by amphiphilic copolymers of N-vinylpyrrolidone with (di)methacrylates. Photophysical properties and biological activity of the NPs aqueous solution were studied. It was found that the dye encapsulated in the copolymers is in an aggregated state. However, its aggregation degree decreases sharply, and singlet oxygen quantum yield and the fluorescence signal increase upon the interaction of these NPs with model biological membranes-liposomes or components of a tissue homogenate. The phototoxic effect of NPs in HeLa cells exceeds by 1.5-2 times that of the reference dye chlorin e6 trisodium salt-one of the most effective photosensitizers used in clinical practice. It could be explained by the effective release of the hydrophobic photosensitizer from the NPs into biological structures. The demonstrated approach can be used not only for the encapsulation of hydrophobic photosensitizers for PDT but also for other drugs, and N-vinylpyrrolidone amphiphilic copolymers show promising potential as a modern platform for the design of targeted delivery vehicles.
Collapse
Affiliation(s)
- Alexander Yu. Rybkin
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
- Correspondence:
| | - Svetlana V. Kurmaz
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
| | - Elizaveta A. Urakova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Natalia V. Filatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
| | - Lev R. Sizov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
| | - Alexey V. Kozlov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
| | - Mikhail O. Koifman
- Department of Chemistry and Technology of Macromolecular Compounds, Ivanovo State University of Chemistry and Technology, Sheremetevskiy Av. 7, 153000 Ivanovo, Russia
| | - Nikolai S. Goryachev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
7
|
New Nanosized Systems Doxorubicin-Amphiphilic Copolymers of N-Vinylpyrrolidone and (Di)methacrylates with Antitumor Activity. Pharmaceutics 2022; 14:pharmaceutics14122572. [PMID: 36559068 PMCID: PMC9784683 DOI: 10.3390/pharmaceutics14122572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Nanosized systems of DOX with antitumor activity on the base of micelle-like particles of amphiphilic thermosensitive copolymers of N-vinylpyrrolidone (VP) with triethylene glycol dimethacrylate (TEGDM), and N-vinylpyrrolidone and methacrylic acid (MAA) with TEGDM were explored. They were investigated in aqueous solutions by electron absorption spectroscopy, dynamic light scattering and cyclic voltammetry. Experimental data and quantum-chemical modeling indicated the formation of a hydrogen bond between oxygen-containing groups of monomer units of the copolymers and H-atoms of OH and NH2 groups of DOX; the energies and H-bond lengths in the considered structures were calculated. A simulation of TDDFT spectra of DOX and its complexes with the VP and TEGDM units was carried out. Electrochemical studies in PBS have demonstrated that the oxidation of encapsulated DOX appeared to be easier than that of the free one, and its reduction was somewhat more difficult. The cytotoxicity of VP-TEGDM copolymer compositions containing 1, 5 and 15 wt% DOX was studied in vitro on HeLa cells, and the values of IC50 doses were determined at 24 and 72 h of exposure. The copolymer compositions containing 5 and 15 wt% DOX accumulated actively in cell nuclei and did not cause visual changes in cell morphology.
Collapse
|
8
|
New amphiphilic terpolymers of N-vinylpyrrolidone with poly(ethylene glycol) methyl ether methacrylate and triethylene glycol dimethacrylate as carriers of the hydrophobic fluorescent dye. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Kurmaz SV, Ivanova II, Fadeeva NV, Perepelitsina EO, Lapshina MA, Balakina AA, Terent’ev AA. New Amphiphilic Branched Copolymers of N-Vinylpyrrolidone with Methacrylic Acid for Biomedical Applications. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
New water-soluble forms of α-tocopherol: preparation and study of antioxidant activity in vitro. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Kurmaz SV, Fadeeva NV, Gorshkova AI, Kurochkin SA, Knerelman EI, Davydova GI, Torbov VI, Dremova NN, Konev DV, Kurmaz VA, Ignatiev VM, Emelyanova NS. Mesoporous Networks of N-Vinylpyrrolidone with (di)Methacrylates as Precursors of Ecological Molecular Imprinted Polymers. MATERIALS 2021; 14:ma14226757. [PMID: 34832160 PMCID: PMC8625661 DOI: 10.3390/ma14226757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022]
Abstract
Mesoporous polymer networks were prepared via the cross-linking radical copolymerization of non-toxic hydrophilic N-vinylpyrrolidone (VP) with triethylene glycol dimethacrylate (TEGDM) and poly(ethylene glycol) methyl ester methacrylate (PEGMMA) in bulk, using appropriate soluble and thermodynamically compatible macromolecular additives with a branched structure as porogens. The branched copolymers of various monomer compositions were obtained by radical copolymerization in toluene, controlled by 1-decanethiol, and these materials were characterized by a wide set of physical chemical methods. The specific surface areas and surface morphology of the polymer networks were determined by nitrogen low-temperature adsorption or Rose Bengal (RB) sorption, depending on the copolymer compositions and scanning electron microscopy. The electrochemical properties of RB before and after its encapsulation into a branched VP copolymer were studied on a glassy carbon electrode and the interaction between these substances was observed. Quantum chemical modeling of RB-VP or RB-copolymer complexes has been carried out and sufficiently strong hydrogen bonds were found in these systems. The experimental and modeling data demonstrate the high potency of such mesoporous polymer networks as precursors of molecularly imprinted polymers for the recognition of fluorescent dyes as nanomarkers for biomedical practice.
Collapse
Affiliation(s)
- Svetlana V. Kurmaz
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432 Chernogolovka, Russia; (N.V.F.); (A.I.G.); (S.A.K.); (E.I.K.); (G.I.D.); (V.I.T.); (N.N.D.); (D.V.K.); (V.A.K.); (V.M.I.); (N.S.E.)
- Correspondence: ; Tel.: +7-496-522-10-89
| | - Natalia V. Fadeeva
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432 Chernogolovka, Russia; (N.V.F.); (A.I.G.); (S.A.K.); (E.I.K.); (G.I.D.); (V.I.T.); (N.N.D.); (D.V.K.); (V.A.K.); (V.M.I.); (N.S.E.)
| | - Anna I. Gorshkova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432 Chernogolovka, Russia; (N.V.F.); (A.I.G.); (S.A.K.); (E.I.K.); (G.I.D.); (V.I.T.); (N.N.D.); (D.V.K.); (V.A.K.); (V.M.I.); (N.S.E.)
- Department of Fundamental Physical and Chemical Engineering, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Sergey A. Kurochkin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432 Chernogolovka, Russia; (N.V.F.); (A.I.G.); (S.A.K.); (E.I.K.); (G.I.D.); (V.I.T.); (N.N.D.); (D.V.K.); (V.A.K.); (V.M.I.); (N.S.E.)
- Faculty of Fundamental Sciences, Bauman Moscow State Technical University, Baumanskaya 2nd 5, 105005 Moscow, Russia
| | - Eugenia I. Knerelman
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432 Chernogolovka, Russia; (N.V.F.); (A.I.G.); (S.A.K.); (E.I.K.); (G.I.D.); (V.I.T.); (N.N.D.); (D.V.K.); (V.A.K.); (V.M.I.); (N.S.E.)
| | - Galina I. Davydova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432 Chernogolovka, Russia; (N.V.F.); (A.I.G.); (S.A.K.); (E.I.K.); (G.I.D.); (V.I.T.); (N.N.D.); (D.V.K.); (V.A.K.); (V.M.I.); (N.S.E.)
| | - Vladimir I. Torbov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432 Chernogolovka, Russia; (N.V.F.); (A.I.G.); (S.A.K.); (E.I.K.); (G.I.D.); (V.I.T.); (N.N.D.); (D.V.K.); (V.A.K.); (V.M.I.); (N.S.E.)
| | - Nadezhda N. Dremova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432 Chernogolovka, Russia; (N.V.F.); (A.I.G.); (S.A.K.); (E.I.K.); (G.I.D.); (V.I.T.); (N.N.D.); (D.V.K.); (V.A.K.); (V.M.I.); (N.S.E.)
| | - Dmitry V. Konev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432 Chernogolovka, Russia; (N.V.F.); (A.I.G.); (S.A.K.); (E.I.K.); (G.I.D.); (V.I.T.); (N.N.D.); (D.V.K.); (V.A.K.); (V.M.I.); (N.S.E.)
| | - Vladimir A. Kurmaz
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432 Chernogolovka, Russia; (N.V.F.); (A.I.G.); (S.A.K.); (E.I.K.); (G.I.D.); (V.I.T.); (N.N.D.); (D.V.K.); (V.A.K.); (V.M.I.); (N.S.E.)
| | - Vladislav M. Ignatiev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432 Chernogolovka, Russia; (N.V.F.); (A.I.G.); (S.A.K.); (E.I.K.); (G.I.D.); (V.I.T.); (N.N.D.); (D.V.K.); (V.A.K.); (V.M.I.); (N.S.E.)
- Department of Fundamental Physical and Chemical Engineering, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Nina S. Emelyanova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432 Chernogolovka, Russia; (N.V.F.); (A.I.G.); (S.A.K.); (E.I.K.); (G.I.D.); (V.I.T.); (N.N.D.); (D.V.K.); (V.A.K.); (V.M.I.); (N.S.E.)
| |
Collapse
|
12
|
Gorbunova MN, Batueva TD, Kiselkov DM, Strelnikov VN. Silver nanocomposites based on copolymers of N,N-diallyl-N’-acetylhydrazine with N-vinylpyrrolidone. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3273-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Amphiphilic copolymers of N-vinylpyrrolidone with (di)methacrylates as promising carriers for the platinum(IV) complex with antitumor activity. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3289-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Hydrogen bonds formed upon encapsulation of doxorubicin into amphiphilic N-vinylpyrrolidone copolymer: a quantum chemical study. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3210-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Kurmaz SV, Fadeeva NV, Grishchuk AA, Emel’yanova NS, Ignat’ev VM, Shilov GV, Soldatova YV, Faingold II, Kotel’nikova RA. Hybrid Materials Based on Dimethylbiguanide (Metformin) and Copolymer of N-Vinylpyrrolidone with Triethylene Glycol Dimethacrylate. POLYMER SCIENCE, SERIES A 2021; 63:106-116. [DOI: 10.1134/s0965545x2102005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/25/2020] [Accepted: 11/03/2020] [Indexed: 01/03/2025]
|
16
|
Kurmaz SV, Fadeeva NV, Ignat’ev VM, Kurmaz VA, Kurochkin SA, Emel’yanova NS. Structure and State of Water in Branched N-Vinylpyrrolidone Copolymers as Carriers of a Hydrophilic Biologically Active Compound. Molecules 2020; 25:molecules25246015. [PMID: 33353192 PMCID: PMC7765915 DOI: 10.3390/molecules25246015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 11/18/2022] Open
Abstract
Hydrated copolymers of N-vinylpyrrolidone (VP) with triethylene glycol dimethacrylate as a promising platform for biologically active compounds (BAC) were investigated by different physical chemical methods (dynamic light scattering, infrared spectroscopy, thermal gravimetric analysis, and differential scanning calorimetry) and the quantum chemical modeling of water coordination by the copolymers in a solution. According to the quantum chemical simulation, one to two water molecules can coordinate on one O-atom of the lactam ring of VP units in the copolymer. Besides the usual terminal coordination, the water molecule can form bridges to bind two adjacent C=O groups of the lactam rings of VP units. In addition to the first hydration shell, the formation of a second one is also possible due to the chain addition of water molecules, and its structure depends on a mutual orientation of C=O groups. We showed that N,N-dimethylbiguanidine hydrochloride (metformin) as a frontline drug for the treatment of type 2 diabetes mellitus can be associated in aqueous solutions with free and hydrated C=O groups of the lactam rings of VP units in studied copolymers. Based on the characteristics of the H-bonds, we believe that the level of the copolymer hydration does not affect the behavior and biological activity of this drug, but the binding of metformin with the amphiphilic copolymer will delight in the penetration of a hydrophilic drug across a cell membrane to increase its bioavailability.
Collapse
Affiliation(s)
- Svetlana V. Kurmaz
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432 Chernogolovka, Russia; (N.V.F.); (V.M.I.); (V.A.K.); (S.A.K.); (N.S.E.)
- Correspondence: ; Tel.: +7-496-522-10-89
| | - Natalia V. Fadeeva
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432 Chernogolovka, Russia; (N.V.F.); (V.M.I.); (V.A.K.); (S.A.K.); (N.S.E.)
| | - Vladislav M. Ignat’ev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432 Chernogolovka, Russia; (N.V.F.); (V.M.I.); (V.A.K.); (S.A.K.); (N.S.E.)
- Department of Fundamental Physical and Chemical Engineering, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Vladimir A. Kurmaz
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432 Chernogolovka, Russia; (N.V.F.); (V.M.I.); (V.A.K.); (S.A.K.); (N.S.E.)
| | - Sergei A. Kurochkin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432 Chernogolovka, Russia; (N.V.F.); (V.M.I.); (V.A.K.); (S.A.K.); (N.S.E.)
- Faculty of Fundamental Sciences, Bauman Moscow State Technical University, Baumanskaya 2nd 5, 105005 Moscow, Russia
| | - Nina S. Emel’yanova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432 Chernogolovka, Russia; (N.V.F.); (V.M.I.); (V.A.K.); (S.A.K.); (N.S.E.)
- Department of Fundamental Physical and Chemical Engineering, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| |
Collapse
|