1
|
Ao L, van Heemst D, Luo J, Teder-Laving M, Mägi R, Frikke-Schmidt R, Willems van Dijk K, Noordam R. Large-scale genome-wide interaction analyses on multiple cardiometabolic risk factors to identify age-specific genetic risk factors. GeroScience 2024:10.1007/s11357-024-01348-0. [PMID: 39322921 DOI: 10.1007/s11357-024-01348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024] Open
Abstract
The genetic landscape of cardiometabolic risk factors has been explored extensively. However, insight in the effects of genetic variation on these risk factors over the life course is sparse. Here, we performed genome-wide interaction studies (GWIS) on different cardiometabolic risk factors to identify age-specific genetic risks. This study included 270,276 unrelated European-ancestry participants from the UK Biobank (54.2% women, a median age of 58 [interquartile range (IQR): 50, 63] years). GWIS models with interaction terms between genetic variants and age were performed on apolipoprotein B (ApoB), low-density lipoprotein-cholesterol (LDL-C), log-transformed triglycerides (TG), body mass index (BMI) and systolic blood pressure (SBP). Replication was subsequently performed in the Copenhagen General Population Study (CGPS) and the Estonian Biobank (EstBB). Multiple lead variants were identified to have genome-wide significant interactions with age (Pinteraction < 1e - 08). In detail, rs429358 (tagging APOE4) was identified for ApoB (Pinteraction = 9.0e - 14) and TG (Pinteraction = 5.4e - 16). Three additional lead variants were identified for ApoB: rs11591147 (R46L in PCSK9, Pinteraction = 3.9e - 09), rs34601365 (near APOB, Pinteraction = 8.4e - 09) and rs17248720 (near LDLR, Pinteraction = 2.0e - 09). Effect sizes of the identified lead variants were generally closer to the null with increasing age. No variant-age interactions were identified for LDL-C, SBP and BMI. The significant interactions of rs429358 with age on ApoB and TG were replicated in both CGPS and EstBB. The majority of genetic effects on cardiometabolic risk factors remain relatively constant over age, with the noted exceptions of specific genetic effects on ApoB and TG.
Collapse
Affiliation(s)
- Linjun Ao
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden, the Netherlands
| | - Jiao Luo
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Maris Teder-Laving
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden, the Netherlands
| |
Collapse
|
2
|
Ioannidou M, Avgeros C, Georgiou E, Papadimitriou-Tsantarliotou A, Dimitriadis D, Tragiannidis A, Panagopoulou P, Papakonstantinou E, Galli-Tsinopoulou A, Makedou K, Hatzipantelis E. Effect of apolipoprotein E (APOE) gene polymorphisms on the lipid profile of children being treated for acute lymphoblastic leukemia. Int J Hematol 2024; 119:755-761. [PMID: 38507115 PMCID: PMC11140815 DOI: 10.1007/s12185-024-03748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Medications used to treat acute lymphoblastic leukemia (ALL), such as L-asparaginase, can cause blood lipid disturbances. These can also be associated with polymorphisms of the lipoprotein lipase (LpL) and apolipoprotein E (APOE) genes. PROCEDURE We aimed to investigate the association between lipid profile, certain LpL and APOE gene polymorphisms (rs268, rs328, rs1801177 and rs7412, rs429358 respectively) as well as the risk subgroup in 30 pediatric patients being treated for ALL, compared with 30 pediatric ALL survivors and 30 healthy controls. RESULTS The only APOE gene polymorphism with significant allelic and genotypic heterogeneity was rs429358. Further analysis of this polymorphism showed that genotype (CC, CT, or TT) was significantly associated with (1) changes in the lipid profile at the end of consolidation (total cholesterol, LDL, apo-B100, and lipoprotein a) and during re-induction (total cholesterol and apo-B100), and (2) classification in the high risk-ALL subgroup (for CC genotype/C allele presence). CONCLUSIONS Lipid abnormalities in children being treated for ALL may be associated with the APOE genotype, which is also possibly associated with risk stratification. Further research is needed to confirm the potential prognostic value of these findings.
Collapse
Affiliation(s)
- Maria Ioannidou
- Pediatric and Adolescent Hematology Oncology Unit, 2nd Department of Pediatrics, Faculty of Health Sciences, School of Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54621, Thessaloniki, Greece.
| | - Chrysostomos Avgeros
- Laboratory of Biological Chemistry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elisavet Georgiou
- Laboratory of Biological Chemistry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aliki Papadimitriou-Tsantarliotou
- Laboratory of Pharmacology, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Athanasios Tragiannidis
- Pediatric and Adolescent Hematology Oncology Unit, 2nd Department of Pediatrics, Faculty of Health Sciences, School of Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54621, Thessaloniki, Greece
| | - Paraskevi Panagopoulou
- 4th Department of Pediatrics, Faculty of Health Sciences, School of Medicine, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Assimina Galli-Tsinopoulou
- Pediatric and Adolescent Hematology Oncology Unit, 2nd Department of Pediatrics, Faculty of Health Sciences, School of Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54621, Thessaloniki, Greece
| | - Kali Makedou
- Laboratory of Biological Chemistry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Emmanuel Hatzipantelis
- Pediatric and Adolescent Hematology Oncology Unit, 2nd Department of Pediatrics, Faculty of Health Sciences, School of Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54621, Thessaloniki, Greece
| |
Collapse
|
3
|
Khalil YA, Rabès JP, Boileau C, Varret M. APOE gene variants in primary dyslipidemia. Atherosclerosis 2021; 328:11-22. [PMID: 34058468 DOI: 10.1016/j.atherosclerosis.2021.05.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023]
Abstract
Apolipoprotein E (apoE) is a major apolipoprotein involved in lipoprotein metabolism. It is a polymorphic protein and different isoforms are associated with variations in lipid and lipoprotein levels and thus cardiovascular risk. The isoform apoE4 is associated with an increase in LDL-cholesterol levels and thus a higher cardiovascular risk compared to apoE3. Whereas, apoE2 is associated with a mild decrease in LDL-cholesterol levels. In the presence of other risk factors, apoE2 homozygotes could develop type III hyperlipoproteinemia (familial dysbetalipoproteinemia or FD), an atherogenic disorder characterized by an accumulation of remnants of triglyceride-rich lipoproteins. Several rare APOE gene variants were reported in different types of dyslipidemias including FD, familial combined hyperlipidemia (FCH), lipoprotein glomerulopathy and bona fide autosomal dominant hypercholesterolemia (ADH). ADH is characterized by elevated LDL-cholesterol levels leading to coronary heart disease, and due to molecular alterations in three main genes: LDLR, APOB and PCSK9. The identification of the APOE-p.Leu167del variant as the causative molecular element in two different ADH families, paved the way to considering APOE as a candidate gene for ADH. Due to non mendelian interacting factors, common genetic and environmental factors and perhaps epigenetics, clinical presentation of lipid disorders associated with APOE variants often strongly overlap. More studies are needed to determine the spectrum of APOE implication in each of the diseases, notably ADH, in order to improve clinical and genetic diagnosis, prognosis and patient management. The purpose of this review is to comment on these APOE variants and on the molecular and clinical overlaps between dyslipidemias.
Collapse
Affiliation(s)
- Yara Abou Khalil
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalo-Universitaire Xavier Bichat, Paris, France; Université de Paris, Paris, France; Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé (PTS), Saint-Joseph University, Beirut, Lebanon
| | - Jean-Pierre Rabès
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalo-Universitaire Xavier Bichat, Paris, France; Laboratory of Biochemistry and Molecular Genetics, Centre Hospitalo-Universitaire Ambroise Paré, HUPIFO, AP-HP. Paris-Saclay, Boulogne-Billancourt, France; UFR Simone Veil-Santé, UVSQ, Montigny-Le-Bretonneux, France
| | - Catherine Boileau
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalo-Universitaire Xavier Bichat, Paris, France; Université de Paris, Paris, France; Genetics Department, AP-HP, CHU Xavier Bichat, Paris, France
| | - Mathilde Varret
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalo-Universitaire Xavier Bichat, Paris, France; Université de Paris, Paris, France.
| |
Collapse
|
4
|
Kei AA, Filippatos TD, Tsimihodimos V, Elisaf MS. A review of the role of apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease. Metabolism 2012; 61:906-21. [PMID: 22304839 DOI: 10.1016/j.metabol.2011.12.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 12/21/2022]
Abstract
The focus of this review is on the role of apolipoprotein C-II (apoC-II) in lipoprotein metabolism and the potential effects on the risk of cardiovascular disease (CVD). We searched PubMed/Scopus for articles regarding apoC-II and its role in lipoprotein metabolism and the risk of CVD. Apolipoprotein C-II is a constituent of chylomicrons, very low-density lipoprotein, low-density lipoprotein, and high-density lipoprotein (HDL). Apolipoprotein C-II contains 3 amphipathic α-helices. The lipid-binding domain of apoC-II is located in the N-terminal, whereas the C-terminal helix of apoC-II is responsible for the interaction with lipoprotein lipase (LPL). At intermediate concentrations (approximately 4 mg/dL) and in normolipidemic subjects, apoC-II activates LPL. In contrast, both an excess and a deficiency of apoC-II are associated with reduced LPL activity and hypertriglyceridemia. Furthermore, excess apoC-II has been associated with increased triglyceride-rich particles and alterations in HDL particle distribution, factors that may increase the risk of CVD. However, there is not enough current evidence to clarify whether increased apoC-II causes hypertriglyceridemia or is an epiphenomenon reflecting hypertriglyceridemia. A number of pharmaceutical interventions, including statins, fibrates, ezetimibe, nicotinic acid, and orlistat, have been shown to reduce the increased apoC-II concentrations. An excess of apoC-II is associated with increased triglyceride-rich particles and alterations in HDL particle distribution. However, prospective trials are needed to assess if apoC-II is a CVD marker or a risk factor in high-risk patients.
Collapse
Affiliation(s)
- Anastazia A Kei
- Department of Internal Medicine, School of Medicine, University of Ioannina, 45 110 Ioannina, Greece
| | | | | | | |
Collapse
|
5
|
Ariza MJ, Sánchez-Chaparro MA, Barón FJ, Hornos AM, Calvo-Bonacho E, Rioja J, Valdivielso P, Gelpi JA, González-Santos P. Additive effects of LPL, APOA5 and APOE variant combinations on triglyceride levels and hypertriglyceridemia: results of the ICARIA genetic sub-study. BMC MEDICAL GENETICS 2010; 11:66. [PMID: 20429872 PMCID: PMC2877669 DOI: 10.1186/1471-2350-11-66] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 04/29/2010] [Indexed: 12/19/2022]
Abstract
Background Hypertriglyceridemia (HTG) is a well-established independent risk factor for cardiovascular disease and the influence of several genetic variants in genes related with triglyceride (TG) metabolism has been described, including LPL, APOA5 and APOE. The combined analysis of these polymorphisms could produce clinically meaningful complementary information. Methods A subgroup of the ICARIA study comprising 1825 Spanish subjects (80% men, mean age 36 years) was genotyped for the LPL-HindIII (rs320), S447X (rs328), D9N (rs1801177) and N291S (rs268) polymorphisms, the APOA5-S19W (rs3135506) and -1131T/C (rs662799) variants, and the APOE polymorphism (rs429358; rs7412) using PCR and restriction analysis and TaqMan assays. We used regression analyses to examine their combined effects on TG levels (with the log-transformed variable) and the association of variant combinations with TG levels and hypertriglyceridemia (TG ≥ 1.69 mmol/L), including the covariates: gender, age, waist circumference, blood glucose, blood pressure, smoking and alcohol consumption. Results We found a significant lowering effect of the LPL-HindIII and S447X polymorphisms (p < 0.0001). In addition, the D9N, N291S, S19W and -1131T/C variants and the APOE-ε4 allele were significantly associated with an independent additive TG-raising effect (p < 0.05, p < 0.01, p < 0.001, p < 0.0001 and p < 0.001, respectively). Grouping individuals according to the presence of TG-lowering or TG-raising polymorphisms showed significant differences in TG levels (p < 0.0001), with the lowest levels exhibited by carriers of two lowering variants (10.2% reduction in TG geometric mean with respect to individuals who were homozygous for the frequent alleles of all the variants), and the highest levels in carriers of raising combinations (25.1% mean TG increase). Thus, carrying two lowering variants was protective against HTG (OR = 0.62; 95% CI, 0.39-0.98; p = 0.042) and having one single raising polymorphism (OR = 1.20; 95% CI, 1.39-2.87; p < 0.001) or more (2 or 3 raising variants; OR = 2.90; 95% CI, 1.56-5.41; p < 0.001) were associated with HTG. Conclusion Our results showed a significant independent additive effect on TG levels of the LPL polymorphisms HindIII, S447X, D9N and N291S; the S19W and -1131T/C variants of APOA5, and the ε4 allele of APOE in our study population. Moreover, some of the variant combinations studied were significantly associated with the absence or the presence of hypertriglyceridemia.
Collapse
Affiliation(s)
- María-José Ariza
- Departamento de Medicina y Dermatología, Facultad de Medicina, Laboratorio de Lípidos y Arteriosclerosis, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Campus de Teatinos, 29010 Málaga, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|