1
|
Landa MS, Schuman ML, Aisicovich M, Peres Diaz LS, Gironacci MM, García SI, Pirola CJ. Valproate decreases transgenerationally blood pressure by affecting thyrotropin-releasing hormone promoter DNA methylation and gene expression in spontaneously hypertensive rat. Mol Cell Biochem 2025; 480:937-949. [PMID: 38630362 DOI: 10.1007/s11010-024-05001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/25/2024] [Indexed: 02/19/2025]
Abstract
Central TRH, a neuropeptide, is involved in cardiovascular regulation. We demonstrated that the overexpression of diencephalic TRH (dTRH) in SHR rats can be prevented by antisense treatment, normalizing blood pressure (BP). Valproate (VPA) is an inhibitor of histone deacetylases (HDAC) which modulates gene expression through epigenetic modifications such as DNA methylation. AIMS Study the role of HDAC inhibition in the regulation of dTRH gene expression and its effect on the pathogenesis of hypertension. MAIN METHODS We treated 7-weeks-old male and female SHR and WKY rats with VPA for 10 weeks and evaluated BP, dTRH mRNA and methylation gene status. KEY FINDINGS VPA attenuated the elevated BP and dTRH mRNA expression characteristic of SHR. Indeed, we found a significant 62% reduction in dTRH mRNA expression in the SHR + VPA group compared to control SHR. The decrease TRH mRNA expression induced by VPA was confirmed "in vitro" in a primary neuron culture using trichostatin A. With methylation specific PCR we demonstrated a significant increase in TRH promoter DNA methylation level in SHR + VPA group compared to control SHR. After 2 weeks of treatment interruption, rats were mated. Although they did not receive any treatment, the offspring born from VPA-treated SHR parents showed similar changes in BP, dTRH expression and methylation status, implying a transgenerational inheritance. Our findings suggest that dTRH modulation by epigenetics mechanism affects BP and could be inherited by the next generation in SHR rats.
Collapse
Affiliation(s)
- María S Landa
- School of Medicine, Institute of Medical Research A. Lanari, Universidad de Buenos Aires, Combatientes de Malvinas 3150, 1427, Ciudad Autonoma de Buenos Aires, Argentina
- Department of Molecular Cardiology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autonoma de Buenos Aires, Argentina
| | - Mariano L Schuman
- School of Medicine, Institute of Medical Research A. Lanari, Universidad de Buenos Aires, Combatientes de Malvinas 3150, 1427, Ciudad Autonoma de Buenos Aires, Argentina
- Department of Molecular Cardiology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autonoma de Buenos Aires, Argentina
| | - Maia Aisicovich
- School of Medicine, Institute of Medical Research A. Lanari, Universidad de Buenos Aires, Combatientes de Malvinas 3150, 1427, Ciudad Autonoma de Buenos Aires, Argentina
- Department of Molecular Cardiology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autonoma de Buenos Aires, Argentina
| | - Ludmila S Peres Diaz
- School of Medicine, Institute of Medical Research A. Lanari, Universidad de Buenos Aires, Combatientes de Malvinas 3150, 1427, Ciudad Autonoma de Buenos Aires, Argentina
- Department of Molecular Cardiology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autonoma de Buenos Aires, Argentina
| | - Mariela M Gironacci
- Department of Biological Chemistry, Faculty of Pharmacy and Biochemistry, School of Pharmacy and Biochemistry (IQUIFIB), National Scientific and Technical Research Council (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autonoma de Buenos Aires, Argentina
| | - Silvia I García
- School of Medicine, Institute of Medical Research A. Lanari, Universidad de Buenos Aires, Combatientes de Malvinas 3150, 1427, Ciudad Autonoma de Buenos Aires, Argentina.
- Department of Molecular Cardiology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autonoma de Buenos Aires, Argentina.
- Laboratory of Experimental Medicine, Hospital Alemán, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Carlos J Pirola
- Department of Molecular Genetics and Biology of Complex Diseases, Center for Traslational Research in Health, Maimonides University, Hidalgo 775, 1405, Ciudad Autonoma de Buenos Aires, Argentina.
- National Scientific and Technical Research Council (CONICET), Ciudad Autonoma de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Cardiovascular and body weight regulation changes in transgenic mice overexpressing thyrotropin-releasing hormone (TRH). J Physiol Biochem 2020; 76:599-608. [PMID: 32914279 DOI: 10.1007/s13105-020-00765-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/02/2020] [Indexed: 11/27/2022]
Abstract
Thyrotropin-releasing hormone (TRH) plays several roles as a hormone/neuropeptide. Diencephalic TRH (dTRH) participates in the regulation of blood pressure in diverse animal models, independently of the thyroid status. The present study aimed to evaluate whether chronic overexpression of TRH in mice affects cardiovascular and metabolic variables. We developed a transgenic (TG) mouse model that overexpresses dTrh. Despite having higher food consumption and water intake, TG mice showed significantly lower body weight respect to controls. Also, TG mice presented higher blood pressure, heart rate, and locomotor activity independently of thyroid hormone levels. These results and the higher urine noradrenaline excretion observed in TG mice suggest a higher metabolic rate mediated by sympathetic overflow. Cardiovascular changes were impeded by siRNA inhibition of the diencephalic Trh overexpression. Also, the silencing of dTRH in the TG mice normalized urine noradrenaline excretion, supporting the view that the cardiovascular effects of TRH involve the sympathetic system. Overall, we show that congenital dTrh overexpression leads to an increase in blood pressure accompanied by changes in body weight and food consumption mediated by a higher sympathetic overflow. These results provide new evidence confirming the participation of TRH in cardiovascular and body weight regulation.
Collapse
|
3
|
Boghosian JD, Luethy A, Cotten JF. Intravenous and Intratracheal Thyrotropin Releasing Hormone and Its Analog Taltirelin Reverse Opioid-Induced Respiratory Depression in Isoflurane Anesthetized Rats. J Pharmacol Exp Ther 2018; 366:105-112. [PMID: 29674333 DOI: 10.1124/jpet.118.248377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/18/2018] [Indexed: 01/14/2023] Open
Abstract
Thyrotropin releasing hormone (TRH) is a tripeptide hormone and a neurotransmitter widely expressed in the central nervous system that regulates thyroid function and maintains physiologic homeostasis. Following injection in rodents, TRH has multiple effects including increased blood pressure and breathing. We tested the hypothesis that TRH and its long-acting analog, taltirelin, will reverse morphine-induced respiratory depression in anesthetized rats following intravenous or intratracheal (IT) administration. TRH (1 mg/kg plus 5 mg/kg/h, i.v.) and talitrelin (1 mg/kg, i.v.), when administered to rats pretreated with morphine (5 mg/kg, i.v.), increased ventilation from 50% ± 6% to 131% ± 7% and 45% ± 6% to 168% ± 13%, respectively (percent baseline; n = 4 ± S.E.M.), primarily through increased breathing rates (from 76% ± 9% to 260% ± 14% and 66% ± 8% to 318% ± 37%, respectively). By arterial blood gas analysis, morphine caused a hypoxemic respiratory acidosis with decreased oxygen and increased carbon dioxide pressures. TRH decreased morphine effects on arterial carbon dioxide pressure, but failed to impact oxygenation; taltirelin reversed morphine effects on both arterial carbon dioxide and oxygen. Both TRH and talirelin increased mean arterial blood pressure in morphine-treated rats (from 68% ± 5% to 126% ± 12% and 64% ± 7% to 116% ± 8%, respectively; n = 3 to 4). TRH, when initiated prior to morphine (15 mg/kg, i.v.), prevented morphine-induced changes in ventilation; and TRH (2 mg/kg, i.v.) rescued all four rats treated with a lethal dose of morphine (5 mg/kg/min, until apnea). Similar to intravenous administration, both TRH (5 mg/kg, IT) and taltirelin (2 mg/kg, IT) reversed morphine effects on ventilation. TRH or taltirelin may have clinical utility as an intravenous or inhaled agent to antagonize opioid-induced cardiorespiratory depression.
Collapse
Affiliation(s)
- James D Boghosian
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (J.D.B., A.L., J.F.C.); and Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland (A.L.)
| | - Anita Luethy
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (J.D.B., A.L., J.F.C.); and Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland (A.L.)
| | - Joseph F Cotten
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (J.D.B., A.L., J.F.C.); and Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland (A.L.)
| |
Collapse
|
4
|
Hudkins KL, Pichaiwong W, Wietecha T, Kowalewska J, Banas MC, Spencer MW, Mühlfeld A, Koelling M, Pippin JW, Shankland SJ, Askari B, Rabaglia ME, Keller MP, Attie AD, Alpers CE. BTBR Ob/Ob mutant mice model progressive diabetic nephropathy. J Am Soc Nephrol 2010; 21:1533-42. [PMID: 20634301 DOI: 10.1681/asn.2009121290] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
There remains a need for robust mouse models of diabetic nephropathy (DN) that mimic key features of advanced human DN. The recently developed mouse strain BTBR with the ob/ob leptin-deficiency mutation develops severe type 2 diabetes, hypercholesterolemia, elevated triglycerides, and insulin resistance, but the renal phenotype has not been characterized. Here, we show that these obese, diabetic mice rapidly develop morphologic renal lesions characteristic of both early and advanced human DN. BTBR ob/ob mice developed progressive proteinuria beginning at 4 weeks. Glomerular hypertrophy and accumulation of mesangial matrix, characteristic of early DN, were present by 8 weeks, and glomerular lesions similar to those of advanced human DN were present by 20 weeks. By 22 weeks, we observed an approximately 20% increase in basement membrane thickness and a >50% increase in mesangial matrix. Diffuse mesangial sclerosis (focally approaching nodular glomerulosclerosis), focal arteriolar hyalinosis, mesangiolysis, and focal mild interstitial fibrosis were present. Loss of podocytes was present early and persisted. In summary, BTBR ob/ob mice develop a constellation of abnormalities that closely resemble advanced human DN more rapidly than most other murine models, making this strain particularly attractive for testing therapeutic interventions.
Collapse
Affiliation(s)
- Kelly L Hudkins
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hilzendeger AM, Morais RL, Todiras M, Plehm R, da Costa Goncalves A, Qadri F, Araujo RC, Gross V, Nakaie CR, Casarini DE, Carmona AK, Bader M, Pesquero JB. Leptin regulates ACE activity in mice. J Mol Med (Berl) 2010; 88:899-907. [PMID: 20614101 DOI: 10.1007/s00109-010-0649-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 06/10/2010] [Accepted: 06/17/2010] [Indexed: 02/06/2023]
Abstract
Leptin is a hormone related to metabolism. It also influences blood pressure, but the mechanisms triggered in this process are not yet elucidated. Angiotensin-I converting enzyme (ACE) regulates cardiovascular functions and recently has been associated with metabolism control and obesity. Here, we used ob/ob mice, a model lacking leptin, to answer the question whether ACE and leptin could interact to influence blood pressure, thereby linking the renin-angiotensin system and obesity. These mice are obese and diabetic but have normal 24 h mean arterial pressure. Our results show that plasma and lung ACE activities as well as ACE mRNA expression were significantly decreased in ob/ob mice. In agreement with these findings, the hypotensive effect produced by enalapril administration was attenuated in the obese mice. Plasma renin, angiotensinogen, angiotensin I, bradykinin, and angiotensin 1-7 were increased, whereas plasma angiotensin II concentration was unchanged in obese mice. Chronic infusion of leptin increased renin activity and angiotensin II concentration in both groups and increased ACE activity in ob/ob mice. Acute leptin infusion restored ACE activity in leptin-deficient mice. Moreover, the effect of an ACE inhibitor on blood pressure was not changed in ob/+ mice during leptin treatment but increased four times in obese mice. In summary, our findings show that the renin-angiotensin system is altered in ob/ob mice, with markedly reduced ACE activity, which suggests a possible connection between the renin-angiotensin system and leptin. These results point to an important interplay between the angiotensinergic and the leptinergic systems, which may play a role in the pathogenesis of obesity, hypertension, and metabolic syndrome.
Collapse
Affiliation(s)
- Aline Mourao Hilzendeger
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, 04023-062 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bełtowski J, Jamroz-Wiśniewska A, Wójcicka G, Lowicka E, Wojtak A. Renal antioxidant enzymes and glutathione redox status in leptin-induced hypertension. Mol Cell Biochem 2008; 319:163-74. [PMID: 18690414 DOI: 10.1007/s11010-008-9889-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 07/23/2008] [Indexed: 02/07/2023]
Abstract
Previously, we have demonstrated that leptin increases blood pressure (BP) in the rats through two oxidative stress-dependent mechanisms: stimulation of extracellular signal-regulated kinases (ERK) by H(2)O(2) and scavenging of nitric oxide (NO) by superoxide (O(2-.)). Herein, we examined if renal glutathione system and antioxidant enzymes determine the mechanism of prohypertensive effect of leptin. Leptin administered at 0.5 mg/kg/day for 4 or 8 days increased BP and renal Na(+),K(+)-ATPase activity and reduced fractional sodium excretion; these effects were prevented by NADPH oxidase inhibitor, apocynin. Superoxide scavenger, tempol, abolished the effect of leptin on BP and renal Na(+) pump in rats receiving leptin for 8 days, whereas ERK inhibitor, PD98059, was effective in animals treated with leptin for 4 days. Leptin administered for 4 days decreased glutathione (GSH) and increased glutathione disulfide (GSSG) in the kidney. In animals receiving leptin for 8 days GSH returned to normal level, which was accompanied by up-regulation of gamma-glutamylcysteine synthetase (gamma-GCS), a rate-limiting enzyme of the GSH biosynthetic pathway. In addition, superoxide dismutase (SOD) activity was decreased, whereas glutathione peroxidase (GPx) was increased in rats receiving leptin for 8 days. Cotreatment with gamma-GCS inhibitor, buthionine sulfoximine (BSO), accelerated, whereas GSH precursor, N-acetylcysteine (NAC), attenuated leptin-induced changes in gamma-GCS, SOD, and GPx. In addition, coadministration of BSO changed the mechanism of BP elevation from H(2)O(2)-ERK to (O(2-.))-NO dependent in animals receiving leptin for 4 days, whereas NAC had the opposite effect in rats treated with leptin for 8 days. These results suggest that initial change in GSH redox status induces decrease in SOD/GPx ratio, which results in greater amount of (O)2-.)) versus H(2)O(2) in later phase of leptin treatment, thus shifting the mechanism of BP elevation from H(2)O(2)-ERK to (O(2-.))-NO dependent.
Collapse
Affiliation(s)
- Jerzy Bełtowski
- Department of Pathophysiology, Medical University, Lublin, Poland.
| | | | | | | | | |
Collapse
|