1
|
Inácio Â, Aguiar L, Rodrigues B, Pires P, Ferreira J, Matos A, Mendonça I, Rosa R, Bicho M, Medeiros R, Bicho MC. Genetic Modulation of HPV Infection and Cervical Lesions: Role of Oxidative Stress-Related Genes. Antioxidants (Basel) 2023; 12:1806. [PMID: 37891885 PMCID: PMC10604255 DOI: 10.3390/antiox12101806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Human papillomavirus (HPV) infection is a necessary but not sufficient factor for the development of invasive cervical cancer (ICC) and high-grade intraepithelial lesion (HSIL). Oxidative stress is known to play a crucial role in HPV infection and carcinogenesis. In this study, we comprehensively investigate the modulation of HPV infection, HSIL and ICC, and ICC through an exploration of oxidative stress-related genes: CβS, MTHFR, NOS3, ACE1, CYBA, HAP, ACP1, GSTT1, GSTM1, and CYP1A1. Notably, the ACE1 gene emerges as a prominent factor with the presence of the I allele offering protection against HPV infection. The association of NOS3 with HPV infection is perceived with the 4a allele showing a protective effect. The presence of the GSTT1 null mutant correlates with increased susceptibility to HPV infection, HSIL and ICC, and ICC. This study also uncovers intriguing epistatic interactions among some of the genes that further accentuate their roles in disease modulation. Indeed, the epistatic interactions between the BB genotype (ACP1) and DD genotype (ECA1) were shown to increase the risk of HPV infection, and the interaction between BB (ACP1) and 0.0 (GSTT1) was associated with HPV infection and cervical lesions. These findings underscore the pivotal role of four oxidative stress-related genes in HPV-associated cervical lesions and cancer development, enriching our clinical understanding of the genetic influences on disease manifestation. The awareness of these genetic variations holds potential clinical implications.
Collapse
Affiliation(s)
- Ângela Inácio
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Saúde Ambiental (ISAMB) e Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto Bento da Rocha Cabral, 1250-047 Lisboa, Portugal
| | - Laura Aguiar
- Instituto de Saúde Ambiental (ISAMB) e Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto Bento da Rocha Cabral, 1250-047 Lisboa, Portugal
| | - Beatriz Rodrigues
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Patrícia Pires
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Joana Ferreira
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Saúde Ambiental (ISAMB) e Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto Bento da Rocha Cabral, 1250-047 Lisboa, Portugal
| | - Andreia Matos
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Saúde Ambiental (ISAMB) e Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto Bento da Rocha Cabral, 1250-047 Lisboa, Portugal
| | - Inês Mendonça
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Raquel Rosa
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Manuel Bicho
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Saúde Ambiental (ISAMB) e Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto Bento da Rocha Cabral, 1250-047 Lisboa, Portugal
| | - Rui Medeiros
- Molecular Oncology & Viral Pathology Group, Research Center (CI-IPOP)/RISE@CI-IPOP, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Maria Clara Bicho
- Instituto de Saúde Ambiental (ISAMB) e Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Preventiva e Saúde Pública, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
2
|
Thomas-Valdés S, Tostes MDGV, Anunciação PC, da Silva BP, Sant'Ana HMP. Association between vitamin deficiency and metabolic disorders related to obesity. Crit Rev Food Sci Nutr 2018; 57:3332-3343. [PMID: 26745150 DOI: 10.1080/10408398.2015.1117413] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inappropriate food behavior contributes to obesity and leads to vitamin deficiency. This review discusses the nutritional status of water- and fat-soluble vitamins in obese subjects. We verified that most vitamins are deficient in obese individuals, especially the fat-soluble vitamins, folic acid, vitamin B12 and vitamin C. However, some vitamins have been less evaluated in cases of obesity. The adipose tissue is considered a metabolic and endocrine organ, which in excess leads to changes in body homeostasis, as well as vitamin deficiency which can aggravate the pathological state. Therefore, the evaluation of vitamin status is of fundamental importance in obese individuals.
Collapse
Affiliation(s)
- Samanta Thomas-Valdés
- a Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud , Universidad de Talca , Talca , Chile
| | - Maria das Graças V Tostes
- b Center of Agrarian Sciences , Universidade Federal do Espírito Santo , Alegre , Espírito Santo , Brazil
| | - Pamella C Anunciação
- c Department of Nutrition and Health , Universidade Federal de Viçosa , Viçosa , Minas Gerais , Brazil
| | - Bárbara P da Silva
- c Department of Nutrition and Health , Universidade Federal de Viçosa , Viçosa , Minas Gerais , Brazil
| | | |
Collapse
|
3
|
Riboflavin attenuates myocardial injury via LSD1-mediated crosstalk between phospholipid metabolism and histone methylation in mice with experimental myocardial infarction. J Mol Cell Cardiol 2018; 115:115-129. [PMID: 29325932 DOI: 10.1016/j.yjmcc.2018.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 01/13/2023]
Abstract
The underlying mechanisms responsible for the cardioprotective effects of riboflavin remain elusive. Current study tested the hypothesis that riboflavin protects injured myocardium via epigenetic modification of LSD1. Here we showed that myocardial injury was attenuated and cardiac function was improved in riboflavin-treated mice with experimental myocardial infarction (MI), while these protective effects of riboflavin could be partly blocked by cotreatment with LSD1 inhibitor. Riboflavin also reduced apoptosis in hypoxic (1% oxygen) H9C2 cell lines. Results of ChIP-seq for H9C2 cells showed that riboflavin activated LSD1, as verified by decreased H3K4me2 levels of target genes. Subsequent LEGO bioinformatics analysis indicated that phospholipid metabolism genes Lpcat2 and Pld1 served as the potential target genes responsible for the LSD1 mediated protective effects. Overexpressions of Lpcat2 and Pld1 aggravated hypoxic injury in H9C2 cells, while these detrimental effects could be attenuated by overexpression of LSD1. We thus propose that riboflavin alleviates myocardial hypoxic/ischemic injury by activating LSD1 cellular activity and modulating the expression of phospholipid metabolism genes. LSD1-mediated crosstalk between phospholipid metabolism and histone methylation might thus be an important mechanism for the cardioprotective effects of riboflavin.
Collapse
|
4
|
Ma N, Yang Y, Liu X, Kong X, Li S, Qin Z, Jiao Z, Li J. UPLC-Q-TOF/MS-based metabonomic studies on the intervention effects of aspirin eugenol ester in atherosclerosis hamsters. Sci Rep 2017; 7:10544. [PMID: 28874840 PMCID: PMC5585262 DOI: 10.1038/s41598-017-11422-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/24/2017] [Indexed: 11/09/2022] Open
Abstract
Based on the pro-drug principle, aspirin and eugenol were used to synthesize aspirin eugenol ester (AEE) by esterification reaction. In present study, the anti-atherosclerosis effects of AEE were investigated in hamsters with the utilization of metabonomic approach based on UPLC-Q-TOF/MS. Biochemical parameters and histopathological injures in stomach, liver and aorta were evaluated. In atherosclerotic hamster, oral administration of AEE normalized biochemical profile such as reducing TG, TCH and LDL, and significantly reduced body weight gain, alleviated hepatic steatosis and improved pathological lesions in aorta. Slight damages in stomach mucous were found in AEE group. Plasma and urine samples in control, model and AEE groups were scattered in the partial least squares-discriminate analysis (PLS-DA) score plots. Thirteen endogenous metabolites in plasma such as lysophosphatidylcholine (LysoPC), leucine and valine, and seventeen endogenous metabolites in urine such as citric acid, phenol sulphate and phenylacetylglycine were selected as potential biomarkers associated with atherosclerosis. They were considered to be in response to anti-atherosclerosis effects of AEE, mainly involved in glycerophospholipid metabolism, amino acid metabolism and energy metabolism. This study extended the understanding of endogenous alterations of atherosclerosis and offered insights into the pharmacodynamic activity of AEE.
Collapse
Affiliation(s)
- Ning Ma
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yajun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiwang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaojun Kong
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shihong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zenghua Jiao
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianyong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
5
|
Liu Y, Chen T, Li MH, Xu HD, Jia AQ, Zhang JF, Wang JS. (1)H NMR based metabolomics approach to study the toxic effects of dichlorvos on goldfish (Carassius auratus). CHEMOSPHERE 2015; 138:537-545. [PMID: 26210017 DOI: 10.1016/j.chemosphere.2015.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/06/2015] [Accepted: 07/15/2015] [Indexed: 05/24/2023]
Abstract
Dichlorvos (DDVP), one of the most widely used organophosphorus pesticides (OPs), has caused serious pollution in environment. In this study, (1)H nuclear magnetic resonance (NMR) based metabolomics approach combined with histopathological and immunohistochemical examination, and biochemical assays were used to investigate toxicities of DDVP on goldfish (Carassius auratus). After 10 days' exposure of DDVP at three dosages of 5.18, 2.59 and 1.73 mg/L, goldfish tissues (gill, brain, liver and kidney) and serum were collected. Histopathology revealed severe impairment of gills, livers and kidneys, and immunohistochemistry disclosed glial fibrillary acidic protein (GFAP) positive reactive astrocytes in brains. Orthogonal signal correction-partial least squares-discriminant analysis (OSC-PLS-DA) of NMR profiles disclosed that DDVP influenced many metabolites (glutamate, aspartate, acetylcholine, 4-aminobutyrate, glutathione, AMP and lactate in brain; glutathione, glucose, histamine in liver; BCAAs, AMP, aspartate, glutamate, riboflavin in kidney) dose-dependently, involved with imbalance of neurotransmitters, oxidative stress, and disorders of energy and amino acid metabolism. Several self-protection mechanisms concerning glutamate degradation and glutathione (GSH) redox system were found in DDVP intoxicated goldfish.
Collapse
Affiliation(s)
- Yan Liu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Ting Chen
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Ming-Hui Li
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Hua-Dong Xu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Ai-Qun Jia
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jian-Fa Zhang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jun-Song Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
6
|
Jones DA, Prior SL, Barry JD, Caplin S, Baxter JN, Stephens JW. Changes in markers of oxidative stress and DNA damage in human visceral adipose tissue from subjects with obesity and type 2 diabetes. Diabetes Res Clin Pract 2014; 106:627-33. [PMID: 25458337 DOI: 10.1016/j.diabres.2014.09.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/24/2014] [Accepted: 09/14/2014] [Indexed: 01/18/2023]
Abstract
AIMS In the past 30 years, prevalence of obesity has almost trebled resulting in an increased incidence of type 2 diabetes mellitus and other co-morbidities. Visceral adipose tissue is believed to play a vital role, but underlying mechanisms remain unclear. Our aim was to investigate changes in markers of oxidative damage in human visceral adipose tissue to determine levels of oxidative burden that may be attributed to obesity and/or diabetes. METHODS Visceral adipose tissue samples from 61 subjects undergoing abdominal surgery grouped as lean, obese and obese with type 2 diabetes mellitus, were examined using 3 different markers of oxidative stress. Malondialdehyde (MDA) concentration was measured as a marker of lipid peroxidation, telomere length and Comet assay as markers of oxidative DNA damage. RESULTS No significant difference in MDA concentration, telomere length and DNA damage was observed between groups, although longer telomere lengths were seen in the obese with diabetes group compared to the obese group (P<0.05). Lower MDA concentration and longer telomere length were seen in subjects with diabetes compared to those without (P<0.05). DNA damage, analysed via Comet assay, was significantly lower in subjects with diabetes compared to those without (P<0.05). CONCLUSION A paradoxical decrease in oxidative stress and DNA damage was observed in samples from subjects with type 2 diabetes mellitus. Further work is required to investigate this further, however this phenomenon may be due to an up regulation of antioxidant defences in adipose tissue.
Collapse
Affiliation(s)
- D A Jones
- Diabetes Research Group, College of Medicine, Swansea University, Singleton Park, Swansea, UK.
| | - S L Prior
- Diabetes Research Group, College of Medicine, Swansea University, Singleton Park, Swansea, UK
| | - J D Barry
- General Surgery (Upper GI (Obesity) and Endocrinology), Morriston Hospital, Swansea, UK
| | - S Caplin
- General Surgery (Upper GI (Obesity) and Endocrinology), Morriston Hospital, Swansea, UK
| | - J N Baxter
- General Surgery (Upper GI (Obesity) and Endocrinology), Morriston Hospital, Swansea, UK
| | - J W Stephens
- Diabetes Research Group, College of Medicine, Swansea University, Singleton Park, Swansea, UK; General Surgery (Upper GI (Obesity) and Endocrinology), Morriston Hospital, Swansea, UK
| |
Collapse
|
7
|
Barbalho SM, Bueno PCDS, Delazari DS, Guiguer EL, Coqueiro DP, Araújo AC, de Souza MDSS, Farinazzi-Machado FM, Mendes CG, Groppo M. Antidiabetic and antilipidemic effects of Manilkara zapota. J Med Food 2014; 18:385-91. [PMID: 25184814 DOI: 10.1089/jmf.2013.0170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Manilkara zapota is a tropical evergreen tree belonging to the Sapotaceae family; its parts are used in alternative medicine to treat coughs and colds and possess diuretic, antidiarrheal, antibiotic, antihyperglycemic, and hypocholesterolemic effects. There are no studies on metabolic profile after using the fruit, and this study aimed at evaluating the effects of the leaf and pulp of M. zapota fruit on the metabolic profile of Wistar rats. Male rats were treated for 50 days with M. zapota leaf juice or fruit juice, after which their biochemical and body composition profiles were analyzed (glycemia, triglycerides, high-density lipoprotein cholesterol (HDL-c), insulin, leptin, aspartate transaminase, alanine aminotransferase, Lee Index, and body mass index). Our results indicate significantly lower levels of glycemia, insulin, leptin, cholesterol, and triglycerides and augmented levels of HDL-c in animals treated with the leaves or fruit of this plant. The percentage of weight gain also declined in animals treated with M. zapota fruit pulp. The use of the M. zapota may be helpful in the prevention of obesity, diabetes, dyslipidemia, and their complications.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, Brazil
- Faculty of Food Technology of Marília (FATEC), Marília, Brazil
| | | | - Débora Souza Delazari
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, Brazil
| | - Daniel Pereira Coqueiro
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, Brazil
| | | | | | - Claudemir Gregório Mendes
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, Brazil
| | - Milton Groppo
- Ribeirão Preto School of Philosophy, Sciences and Literature, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
8
|
The role of low-molecular-weight protein tyrosine phosphatase (LMW-PTP ACP1) in oncogenesis. Tumour Biol 2013; 34:1979-89. [DOI: 10.1007/s13277-013-0784-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/27/2013] [Indexed: 01/20/2023] Open
|
9
|
Teruel M, Martin JE, Gómez-García M, Cardeña C, Rodrigo L, Nieto A, Alcain G, Cueto I, López-Nevot MA, Martin J. Lack of association of ACP1 gene with inflammatory bowel disease: a case-control study. ACTA ACUST UNITED AC 2012; 80:61-4. [PMID: 22428720 DOI: 10.1111/j.1399-0039.2012.01861.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The red cell acid phosphatease (ACP1) gene, which encodes a low molecular weight phosphotyrosine phosphatase (LMW-PTP), has been suggested as a common genetic factor of autoimmunity. In the present study, we aimed to investigate the possible influence of ACP1 polymorphisms in the susceptibility of inflammatory bowel disease (IBD). A total of 1271 IBD Spanish patients [720 Crohn's disease (CD) and 551 ulcerative colitis (UC)] and 1877 healthy subjects were included. Four single-nucleotide polymorphisms (SNPs), rs10167992, rs11553742, rs7576247 and rs3828329, were genotyped using TaqMan SNP genotyping assays. Common ACP1 alleles (i.e. ACP1*A, ACP1*B and ACP1*C) were determined by two of these SNPs. After the analysis, no evidence of association of the ACP1 genetic variants was found with CD or UC. Therefore, our results suggest that the ACP1 gene may not play a relevant role in the development of IBD.
Collapse
Affiliation(s)
- M Teruel
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Armilla, Granada, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Teruel M, Martin JE, Ortego-Centeno N, Jiménez-Alonso J, Sánchez-Román J, de Ramón E, Gonzalez-Escribano MF, Pons-Estel BA, D'Alfonso S, Sebastiani GD, Witte T, Bottini N, González-Gay MA, Alarcón-Riquelme ME, Martin J. Novel association of acid phosphatase locus 1*C allele with systemic lupus erythematosus. Hum Immunol 2012; 73:107-10. [DOI: 10.1016/j.humimm.2011.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/07/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
|
11
|
Maccari R, Ottanà R. Low molecular weight phosphotyrosine protein phosphatases as emerging targets for the design of novel therapeutic agents. J Med Chem 2011; 55:2-22. [PMID: 21988196 DOI: 10.1021/jm200607g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rosanna Maccari
- Dipartimento Farmaco-Chimico, Faculty of Pharmacy, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy.
| | | |
Collapse
|
12
|
Teruel M, Martin JE, González-Juanatey C, López-Mejias R, Miranda-Filloy JA, Blanco R, Balsa A, Pascual-Salcedo D, Rodriguez-Rodriguez L, Fernández-Gutierrez B, Ortiz AM, González-Alvaro I, Gómez-Vaquero C, Bottini N, Llorca J, González-Gay MA, Martin J. Association of acid phosphatase locus 1*C allele with the risk of cardiovascular events in rheumatoid arthritis patients. Arthritis Res Ther 2011; 13:R116. [PMID: 21767392 PMCID: PMC3239354 DOI: 10.1186/ar3401] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/09/2011] [Accepted: 07/18/2011] [Indexed: 01/14/2023] Open
Abstract
Introduction Acid phosphatase locus 1 (ACP1) encodes a low molecular weight phosphotyrosine phosphatase implicated in a number of different biological functions in the cell. The aim of this study was to determine the contribution of ACP1 polymorphisms to susceptibility to rheumatoid arthritis (RA), as well as the potential contribution of these polymorphisms to the increased risk of cardiovascular disease (CV) observed in RA patients. Methods A set of 1,603 Spanish RA patients and 1,877 healthy controls were included in the study. Information related to the presence/absence of CV events was obtained from 1,284 of these participants. All individuals were genotyped for four ACP1 single-nucleotide polymorphisms (SNPs), rs10167992, rs11553742, rs7576247, and rs3828329, using a predesigned TaqMan SNP genotyping assay. Classical ACP1 alleles (*A, *B and *C) were imputed with SNP data. Results No association between ACP1 gene polymorphisms and susceptibility to RA was observed. However, when RA patients were stratified according to the presence or absence of CV events, an association between rs11553742*T and CV events was found (P = 0.012, odds ratio (OR) = 2.62 (1.24 to 5.53)). Likewise, the ACP1*C allele showed evidence of association with CV events in patients with RA (P = 0.024, OR = 2.43). Conclusions Our data show that the ACP1*C allele influences the risk of CV events in patients with RA.
Collapse
Affiliation(s)
- María Teruel
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Avd, del Conocimiento s/n, 18010, Granada, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|