1
|
Alanazi WA, Al-Harbi NO, Imam F, Ansari MA, Alhoshani A, Alasmari AF, Alasmari F, Alanazi MM, Ali N. Role of carnitine in regulation of blood pressure (MAP/SBP) and gene expression of cardiac hypertrophy markers (α/β-MHC) during insulin-induced hypoglycaemia: Role of oxidative stress. Clin Exp Pharmacol Physiol 2021; 48:478-489. [PMID: 33368625 DOI: 10.1111/1440-1681.13455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/09/2020] [Indexed: 11/28/2022]
Abstract
Cardiovascular disease is a leading cause of death in diabetic patients. Hyperglycaemia and iatrogenic hypoglycaemia exacerbate several pathogenic mechanisms underlying hypertension and heart diseases. Carnitine is a potent endogenous antioxidant and cellular fatty acid transporter for antioxidative stress and energy production in the cardiovascular system. The current study aimed to find the role of carnitine in the regulation of hypoglycaemia-induced hypertension and cardiac hypertrophy. Male rats received insulin glargine (InG) to induce hypoglycaemia followed by D-carnitine or acetyl-L-carnitine for carnitine depletion or carnitine supplementation, respectively. The obtained results showed that carnitine deficiency provoked hypoglycaemia-induced hypertension. Mean arterial pressure was elevated from 78.16 ± 11.4 to 100 ± 5.11 mm Hg in InG treated group, and from 78.2 ± 8.5 to 123.4 ± 28.2 mm Hg in InG + D-carnitine treated group. Acetyl-L-carnitine resisted the elevation in blood pressure in all hypoglycaemic animals and kept it within the normal values (68.33 ± 6.7 mm Hg). Acetyl-L-carnitine increased myocardial carnitine content leading to the attenuation of hypoglycaemia-induced oxidative stress, which was evaluated through measurement of the oxidative stress biomarkers such as inducible nitric oxide synthase, NAD(P)H quinone dehydrogenase-1, heme oxygenase-I, and glutathione S-transferase. Moreover, acetyl-L-carnitine prevented induction of gene expression of cardiac hypertrophy markers during hypoglycaemic conditions, which was assessed via the evaluation of mRNA expression of α-myosin heavy chain and β-myosin heavy chain. These findings demonstrate that carnitine might play an essential role in prevention of hypoglycaemia-induced hypertension and cardiac hypertrophy through providing energy and antioxidants to the cardiovascular system.
Collapse
Affiliation(s)
- Wael A Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Effect of high-fat diet on peripheral blood mononuclear cells and adipose tissue in early stages of diet-induced weight gain. Br J Nutr 2020; 122:1359-1367. [PMID: 31554524 DOI: 10.1017/s0007114519002472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Subcutaneous adipose tissue (scAT) and peripheral blood mononuclear cells (PBMC) play a significant role in obesity-associated systemic low-grade inflammation. High-fat diet (HFD) is known to induce inflammatory changes in both scAT and PBMC. However, the time course of the effect of HFD on these systems is still unknown. The aim of the present study was to determine the time course of the effect of HFD on PBMC and scAT. New Zealand white rabbits were fed HFD for 5 or 10 weeks (i.e. HFD-5 and HFD-10) or regular chow (i.e. control (CNT)-5 and CNT-10). Thereafter, metabolic and inflammatory parameters of PBMC and scAT were quantified. HFD induced hyperfattyacidaemia in HFD-5 and HFD-10 groups, with the development of insulin resistance in HFD-10, while no changes were observed in scAT lipid metabolism and inflammatory status. HFD activated the inflammatory pathways in PBMC of HFD-5 group and induced modified autophagy in that of HFD-10. The rate of fat oxidation in PBMC was directly associated with the expression of inflammatory markers and tended to inversely associate with autophagosome formation markers in PBMC. HFD affected systemic substrate metabolism, and the metabolic, inflammatory and autophagy pathways in PBMC in the absence of metabolic and inflammatory changes in scAT. Dietary approaches or interventions to avert HFD-induced changes in PBMC could be essential to prevent metabolic and inflammatory complications of obesity and promote healthier living.
Collapse
|
3
|
Wang R, Liu R, Li L, Liu B, Bai L, Wang W, Zhao S, Liu E. Fasting is not required for measuring plasma lipid levels in rabbits. Lab Anim 2019; 54:272-280. [PMID: 31216952 DOI: 10.1177/0023677219855102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Plasma lipid and glucose levels are important parameters for evaluating the onset and development of metabolic and cardiovascular diseases. In clinical and experimental studies of humans or mice, fasting is often required before testing plasma lipid and glucose levels. The rabbit is a valuable animal model for cardiovascular disease research. However, whether fasting is necessary for measuring plasma lipid and glucose levels in rabbits remains unclear. In the current study, 12 healthy Japanese white rabbits (males weighing 2.5-3.0 kg) were randomly divided into a chow diet group (n = 6) and a high cholesterol diet group (n = 6). They were fed either a standard chow diet or a chow diet supplemented with 0.5% cholesterol and 3% corn oil for 12 weeks. After 12 weeks, the plasma levels of total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and glucose were measured before and after various fasting durations (8, 12, 16, 20 and 24 h). The results showed that there were no significant differences in lipid levels between the fasting and non-fasting samples, whereas glucose levels were lower after 8 h of fasting than in the absence of fasting. Moreover, the glucose levels were restored to normal after 8 h of refeeding. These results indicate that fasting does not affect plasma lipid values in rabbits but that fasting is important for determining the glucose level in rabbits. These findings may be helpful for future rabbit experiments and beneficial for animal welfare.
Collapse
Affiliation(s)
- Rong Wang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ruihan Liu
- Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Li
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Baoning Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Liang Bai
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Weirong Wang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Asghar R, Chondronikola M, Dillon EL, Durham WJ, Porter C, Wu Z, Camacho-Hughes M, Andersen CR, Spratt H, Volpi E, Sheffield-Moore M, Sidossis L, Wolfe RR, Abate N, Tuvdendorj DR. Quantification of muscle triglyceride synthesis rate requires an adjustment for total triglyceride content. J Lipid Res 2018; 59:2018-2024. [PMID: 30131344 DOI: 10.1194/jlr.d082321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/18/2018] [Indexed: 01/06/2023] Open
Abstract
Intramyocellular triglyceride (imTG) in skeletal muscle plays a significant role in metabolic health, and an infusion of [13C16]palmitate can be used to quantitate the in vivo fractional synthesis rate (FSR) and absolute synthesis rate (ASR) of imTGs. However, the extramyocellular TG (emTG) pool, unless precisely excised, contaminates the imTG pool, diluting the imTG-bound tracer enrichment and leading to underestimation of FSR. Because of the difficulty of excising the emTGs precisely, it would be advantageous to be able to calculate the imTG synthesis rate without dissecting the emTGs from each sample. Here, we tested the hypothesis that the ASR of total TGs (tTGs), a combination of imTGs and emTGs, calculated as "FSR × tTG pool," reasonably represents the imTG synthesis. Muscle lipid parameters were measured in nine healthy women at 90 and 170 min after the start of [13C16]palmitate infusion. While the measurements of tTG content, enrichment, and FSR did not correlate (P > 0.05), those of the tTG ASR were significantly correlated (r = 0.947, P < 0.05). These results demonstrate that when imTGs and emTGs are pooled, the resulting underestimation of imTG FSR is balanced by the overestimation of the imTG content. We conclude that imTG metabolism is reflected by the measurement of the tTG ASR.
Collapse
Affiliation(s)
- Rabia Asghar
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, TX
| | - Maria Chondronikola
- Departments of Surgery, University of Texas Medical Branch, Galveston, TX.,Metabolism Unit, Shriners Hospitals for Children, Galveston, TX
| | - Edgar L Dillon
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, TX
| | - William J Durham
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, TX
| | - Craig Porter
- Departments of Surgery, University of Texas Medical Branch, Galveston, TX.,Metabolism Unit, Shriners Hospitals for Children, Galveston, TX
| | | | - Maria Camacho-Hughes
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, TX
| | - Clark R Andersen
- Departments of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX
| | - Heidi Spratt
- Departments of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX
| | - Elena Volpi
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, TX
| | | | - Labros Sidossis
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, TX.,Metabolism Unit, Shriners Hospitals for Children, Galveston, TX
| | - Robert R Wolfe
- Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Nicola Abate
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, TX
| | | |
Collapse
|
5
|
Imran A, Butt MS, Arshad MS, Arshad MU, Saeed F, Sohaib M, Munir R. Exploring the potential of black tea based flavonoids against hyperlipidemia related disorders. Lipids Health Dis 2018; 17:57. [PMID: 29592809 PMCID: PMC5872535 DOI: 10.1186/s12944-018-0688-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 02/23/2018] [Indexed: 01/04/2023] Open
Abstract
Background In recent decade, Hyperlipidemia related disorders like obesity, hypercholesterolemia and diabetes are considered as the leading killers for mankind. Fundamental nexus between nutrition and health diverting the consumers focus towards plant based natural products as a remedy against various metabolic syndrome. Considering this, present study was conducted to explicate the role of black tea polyphenols such as Theaflavins and thearubigins therapeutic potential to tackle targeted maladies especially oxidative stress related disorders like hypercholesterolemia and diabetes. Methods The mandate of current investigation was to explore the hypoglycemic and hypocholestrolemic perspective of isolated theaflavin and thearubigins through a model feeding trial. For the purpose, theaflavin & thearubigins were isolated from black tea through solvent partition method and utilize to form three types of nutraceutical drinks (theaflavin, thearubigins & theaflavin + thearubigins based) alongside control to be further utilized in bioefficacy trial. In bioefficacy trial, three types of independent studies were design on the bases of diet by involving 20 male wistar rats in each study (5 for each group). In study I, normal diet was administrated while, in study II & III high cholesterol and high sucrose diet was given, respectively along with prepared nutraceutical drinks to synchronize their therapeutic effect for a period of 56 days. At the termination of trial, Feed & drink intakes, body weight, total cholesterol, LDL, HDL, triglycerides, glucose and insulin levels were measured. Results The results indicated reduction in cholesterol, LDL and triglycerides levels of experimental rats in all studies with significant increase in HDL. In this context, theaflavin based drink imparted maximum reduction in cholesterol (3.75, 11.03 & 10.39%), LDL (3.84, 14.25& 10.84%) & triglycerides (2.99, 8.54 & 6.65%) in respective studies compared to thearubigins and theaflavin + thearubigins based drinks. However, theaflavin+ thearubigins based drink caused highest glucose decline and maximum insulin increase in all studies as compared to other nutraceutical drinks. The reported value for the insulin increase were 13.02 ± 1.02 & 14.55 ± 1.13, 10.09 ± 0.15 & 11.59 ± 0.86 for Hyperglycemic and Hypocholestrolemic rats respectively compared to control (7.84 ± 0.45 & 9.10 ± 0.41) for study I and II. Conclusions In the nutshell, theaflavin and thearubigins based dietary interventions are helpful to alleviate the hypercholestrolemia and hyperglycemia and should be promoted as parallel therapy to combat these disorders.
Collapse
Affiliation(s)
- Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, 38040, Pakistan
| | - Masood Sadiq Butt
- National institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Sajid Arshad
- Institute of Home and Food Sciences, Government College University, Faisalabad, 38040, Pakistan.
| | - Muhammad Umair Arshad
- Institute of Home and Food Sciences, Government College University, Faisalabad, 38040, Pakistan
| | - Farhan Saeed
- Institute of Home and Food Sciences, Government College University, Faisalabad, 38040, Pakistan
| | - Muhammad Sohaib
- Department of Food Science and Human Nutrition, University of Veterinary and animal Sciences, Lahore, 54000, Pakistan
| | - Rizwan Munir
- Department of Statistics, Government College University, Faisalabad, 38040, Pakistan
| |
Collapse
|
6
|
Wu J, Wu Q, Wang D, Kong J, Dai W, Wang X, Yu X. Common lipid features of lethal ventricular tarchyarrhythmias (LVTAs) induced by myocardial infarction and myocardial ion channel diseases. Sci Rep 2017; 7:4220. [PMID: 28652611 PMCID: PMC5484696 DOI: 10.1038/s41598-017-04620-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/06/2017] [Indexed: 02/05/2023] Open
Abstract
Lethal ventricular tachyarrhythmia (LVTA) is the most prevalent electrophysiological underpinning of sudden cardiac death (SCD), a condition that occurs in response to multiple pathophysiological abnormalities. The aim of this study was to identify common lipid features of LVTA that were induced by distinct pathophysiological conditions, thereby facilitating the discovery of novel SCD therapeutic targets. Two rat LVTA-SCD models were established to mimic myocardial infarction (MI) and myocardial ion channel diseases. Myocardial and serum specimens were analyzed using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)-based lipidomics. The lipid profiles of the myocardial and serum specimens were similar between the models. Eleven myocardial lipid classes were altered, including downregulations of: cardiolipin, ceramide, phosphatidylinositol, phosphatidylethanolamine, triacylglycerol, diacylglycerol, phosphatidylglycerol, lysophosphatidylethanolamine and phosphatidylserine, and upregulations of: lysophosphatidylcholine and phosphatidic acid. Serum concentrations of triacylglycerol, lysophosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol were also altered. Alterations of lipids in paired myocardia and sera were closely correlated. Cardiolipin 70:5, cardiolipin 74:9 and ceramide d34:2 were tested as potential biomarkers of LVTA. The results indicate that there are common LVTA lipid profiles induced by MI and myocardial ion channel diseases, potentially offering novel LVTA-SCD therapeutic targets.
Collapse
Affiliation(s)
- Jiayan Wu
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Qian Wu
- Shanghai Center for Bioinformation Technology, Shanghai, 201203, China
| | - Dian Wang
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, China.
| | - Jing Kong
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Wentao Dai
- Shanghai Center for Bioinformation Technology, Shanghai, 201203, China
| | - Xingxing Wang
- 2nd Affiliated Hospital, Affiliated Hospital, Shantou University Medical College, Shantou, 515041, China
| | - Xiaojun Yu
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
7
|
Xin Y, Wang H. Serum Metabonomics Analysis of Fuzi Lizhong Decoction for the Treatment of Splenasthenic Syndrome. Chromatographia 2017. [DOI: 10.1007/s10337-017-3308-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|