1
|
de Alwis N, Binder NK, Beard S, Mangwiro YTM, Kadife E, Cuffe JSM, Keenan E, Fato BR, Kaitu’u-Lino TJ, Brownfoot FC, Marshall SA, Hannan NJ. The L-NAME mouse model of preeclampsia and impact to long-term maternal cardiovascular health. Life Sci Alliance 2022; 5:5/12/e202201517. [PMID: 36260752 PMCID: PMC9356384 DOI: 10.26508/lsa.202201517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Preeclampsia affects ∼2–8% of pregnancies worldwide. It is associated with increased long-term maternal cardiovascular disease risk. This study assesses the effect of the vasoconstrictor N(ω)-nitro-L-arginine methyl ester (L-NAME) in modelling preeclampsia in mice, and its long-term effects on maternal cardiovascular health. In this study, we found that L-NAME administration mimicked key characteristics of preeclampsia, including elevated blood pressure, impaired fetal and placental growth, and increased circulating endothelin-1 (vasoconstrictor), soluble fms-like tyrosine kinase-1 (anti-angiogenic factor), and C-reactive protein (inflammatory marker). Post-delivery, mice that received L-NAME in pregnancy recovered, with no discernible changes in measured cardiovascular indices at 1-, 2-, and 4-wk post-delivery, compared with matched controls. At 10-wk post-delivery, arteries collected from the L-NAME mice constricted significantly more to phenylephrine than controls. In addition, these mice had increased kidney Mmp9:Timp1 and heart Tnf mRNA expression, indicating increased inflammation. These findings suggest that though administration of L-NAME in mice certainly models key characteristics of preeclampsia during pregnancy, it does not appear to model the adverse increase in cardiovascular disease risk seen in individuals after preeclampsia.
Collapse
Affiliation(s)
- Natasha de Alwis
- Department of Obstetrics and Gynaecology, Therapeutics Discovery and Vascular Function Group, The University of Melbourne and Mercy Hospital for Women, Heidelberg, Australia
- Mercy Perinatal, Heidelberg, Australia
| | - Natalie K Binder
- Department of Obstetrics and Gynaecology, Therapeutics Discovery and Vascular Function Group, The University of Melbourne and Mercy Hospital for Women, Heidelberg, Australia
- Mercy Perinatal, Heidelberg, Australia
| | - Sally Beard
- Department of Obstetrics and Gynaecology, Therapeutics Discovery and Vascular Function Group, The University of Melbourne and Mercy Hospital for Women, Heidelberg, Australia
- Mercy Perinatal, Heidelberg, Australia
| | - Yeukai TM Mangwiro
- Department of Obstetrics and Gynaecology, Therapeutics Discovery and Vascular Function Group, The University of Melbourne and Mercy Hospital for Women, Heidelberg, Australia
- Mercy Perinatal, Heidelberg, Australia
| | - Elif Kadife
- Mercy Perinatal, Heidelberg, Australia
- Department of Obstetrics and Gynaecology, Obstetrics Diagnostics and Therapeutics Group, The University of Melbourne and Mercy Hospital for Women, Heidelberg, Australia
| | - James SM Cuffe
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Emerson Keenan
- Mercy Perinatal, Heidelberg, Australia
- Department of Obstetrics and Gynaecology, Obstetrics Diagnostics and Therapeutics Group, The University of Melbourne and Mercy Hospital for Women, Heidelberg, Australia
| | - Bianca R Fato
- Department of Obstetrics and Gynaecology, Therapeutics Discovery and Vascular Function Group, The University of Melbourne and Mercy Hospital for Women, Heidelberg, Australia
- Mercy Perinatal, Heidelberg, Australia
| | - Tu’uhevaha J Kaitu’u-Lino
- Mercy Perinatal, Heidelberg, Australia
- Department of Obstetrics and Gynaecology, Diagnostics Discovery and Reverse Translation in Pregnancy Group, The University of Melbourne and Mercy Hospital for Women, Heidelberg, Australia
| | - Fiona C Brownfoot
- Mercy Perinatal, Heidelberg, Australia
- Department of Obstetrics and Gynaecology, Obstetrics Diagnostics and Therapeutics Group, The University of Melbourne and Mercy Hospital for Women, Heidelberg, Australia
| | - Sarah A Marshall
- Department of Obstetrics and Gynaecology, The Ritchie Centre, School of Clinical Sciences, Monash University and The Hudson Institute of Medical Research, Clayton, Australia
| | - Natalie J Hannan
- Department of Obstetrics and Gynaecology, Therapeutics Discovery and Vascular Function Group, The University of Melbourne and Mercy Hospital for Women, Heidelberg, Australia
- Mercy Perinatal, Heidelberg, Australia
| |
Collapse
|
2
|
Selivanova EK, Shvetsova AA, Borzykh AA, Gaynullina DK, Kiryukhina OO, Lukoshkova EV, Potekhina VM, Kuzmin VS, Tarasova OS. Intrauterine L-NAME Exposure Weakens the Development of Sympathetic Innervation and Induces the Remodeling of Arterial Vessels in Two-Week-Old Rats. Int J Mol Sci 2021; 22:ijms222212327. [PMID: 34830206 PMCID: PMC8618620 DOI: 10.3390/ijms222212327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 11/19/2022] Open
Abstract
Nitric oxide (NO) has been shown to stimulate differentiation and increase the survival of ganglionic sympathetic neurons. The proportion of neuronal NOS-immunoreactive sympathetic preganglionic neurons is particularly high in newborn rats and decreases with maturation. However, the role of NO in the development of vascular sympathetic innervation has never been studied before. We tested the hypothesis that intrauterine NO deficiency weakened the development of vascular sympathetic innervation and thereby changed the contractility of peripheral arteries and blood pressure level in two-week-old offspring. Pregnant rats consumed NOS inhibitor L-NAME (250 mg/L in drinking water) from gestational day 10 until delivery. Pups in the L-NAME group had a reduced body weight and blood level of NO metabolites at 1–2 postnatal days. Saphenous arteries from two-week-old L-NAME offspring demonstrated a lower density of sympathetic innervation, a smaller inner diameter, reduced maximal active force and decreased α-actin/β-actin mRNA expression ratio compared to the controls. Importantly, pups in the L-NAME group exhibited decreased blood pressure levels before, but not after, ganglionic blockade with chlorisondamine. In conclusion, intrauterine L-NAME exposure is followed by the impaired development of the sympathetic nervous system in early postnatal life, which is accompanied by the structural and functional remodeling of arterial blood vessels.
Collapse
Affiliation(s)
- Ekaterina K. Selivanova
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia; (E.K.S.); (A.A.S.); (D.K.G.); (V.M.P.); (V.S.K.)
| | - Anastasia A. Shvetsova
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia; (E.K.S.); (A.A.S.); (D.K.G.); (V.M.P.); (V.S.K.)
| | - Anna A. Borzykh
- Laboratory of Exercise Physiology, State Research Center of the Russian Federation, Institute for Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia;
| | - Dina K. Gaynullina
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia; (E.K.S.); (A.A.S.); (D.K.G.); (V.M.P.); (V.S.K.)
| | - Oxana O. Kiryukhina
- Laboratory for the Study of Information Processes at the Cellular and Molecular Levels, Institute for Information Transmission Problems, Russian Academy of Sciences, 119333 Moscow, Russia;
| | - Elena V. Lukoshkova
- Laboratory of Experimental Pathology of the Heart, National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, 121552 Moscow, Russia;
| | - Viktoria M. Potekhina
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia; (E.K.S.); (A.A.S.); (D.K.G.); (V.M.P.); (V.S.K.)
| | - Vladislav S. Kuzmin
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia; (E.K.S.); (A.A.S.); (D.K.G.); (V.M.P.); (V.S.K.)
| | - Olga S. Tarasova
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia; (E.K.S.); (A.A.S.); (D.K.G.); (V.M.P.); (V.S.K.)
- Laboratory of Exercise Physiology, State Research Center of the Russian Federation, Institute for Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia;
- Correspondence:
| |
Collapse
|
3
|
Lazniewska J, Darby JRT, Holman SL, Sorvina A, Plush SE, Massi M, Brooks DA, Morrison JL. In utero substrate restriction by placental insufficiency or maternal undernutrition decreases optical redox ratio in foetal perirenal fat. JOURNAL OF BIOPHOTONICS 2021; 14:e202000322. [PMID: 33389813 DOI: 10.1002/jbio.202000322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Intrauterine growth restriction (IUGR) can result from reduced delivery of substrates, including oxygen and glucose, during pregnancy and may be caused by either placental insufficiency or maternal undernutrition. As a consequence of IUGR, there is altered programming of adipose tissue and this can be associated with metabolic diseases later in life. We have utilised two sheep models of IUGR, placental restriction and late gestation undernutrition, to determine the metabolic effects of growth restriction on foetal perirenal adipose tissue (PAT). Two-photon microscopy was employed to obtain an optical redox ratio, which gives an indication of cell metabolism. PAT of IUGR foetuses exhibited higher metabolic activity, altered lipid droplet morphology, upregulation of cytochrome c oxidase subunit genes and decreased expression of genes involved in growth and differentiation. Our results indicate that there are adaptations in PAT of IUGR foetuses that might be protective and ensure survival in response to an IUGR insult.
Collapse
Affiliation(s)
- Joanna Lazniewska
- Mechanisms in Cell Biology and Disease Research Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Alexandra Sorvina
- Mechanisms in Cell Biology and Disease Research Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sally E Plush
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Massimiliano Massi
- Department of Chemistry, Curtin University, Perth, Western Australia, Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Gatford KL, Andraweera PH, Roberts CT, Care AS. Animal Models of Preeclampsia: Causes, Consequences, and Interventions. Hypertension 2020; 75:1363-1381. [PMID: 32248704 DOI: 10.1161/hypertensionaha.119.14598] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preeclampsia is a common pregnancy complication, affecting 2% to 8% of pregnancies worldwide, and is an important cause of both maternal and fetal morbidity and mortality. Importantly, although aspirin and calcium are able to prevent preeclampsia in some women, there is no cure apart from delivery of the placenta and fetus, often necessitating iatrogenic preterm birth. Preclinical models of preeclampsia are widely used to investigate the causes and consequences of preeclampsia and to evaluate safety and efficacy of potential preventative and therapeutic interventions. In this review, we provide a summary of the published preclinical models of preeclampsia that meet human diagnostic criteria, including the development of maternal hypertension, together with new-onset proteinuria, maternal organ dysfunction, and uteroplacental dysfunction. We then discuss evidence from preclinical models for multiple causal factors of preeclampsia, including those implicated in early-onset and late-onset preeclampsia. Next, we discuss the impact of exposure to a preeclampsia-like environment for later maternal and progeny health. The presence of long-term impairment, particularly cardiovascular outcomes, in mothers and progeny after an experimentally induced preeclampsia-like pregnancy, implies that later onset or reduced severity of preeclampsia will improve later maternal and progeny health. Finally, we summarize published intervention studies in preclinical models and identify gaps in knowledge that we consider should be targets for future research.
Collapse
Affiliation(s)
- Kathryn L Gatford
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Prabha H Andraweera
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Claire T Roberts
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Alison S Care
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| |
Collapse
|
5
|
Mechanisms linking exposure to preeclampsia in utero and the risk for cardiovascular disease. J Dev Orig Health Dis 2020; 11:235-242. [PMID: 32070456 DOI: 10.1017/s2040174420000094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Preeclampsia (PE) is now recognised as a cardiovascular risk factor for women. Emerging evidence suggests that children exposed to PE in utero may also be at increased risk of cardiovascular disease (CVD) in later life. Individuals exposed to PE in utero have higher systolic and diastolic blood pressure and higher body mass index (BMI) compared to those not exposed to PE in utero. The aim of this review is to discuss the potential mechanisms driving the relationship between PE and offspring CVD. Exposure to an adverse intrauterine environment as a consequence of the pathophysiological changes that occur during a pregnancy complicated by PE is proposed as one mechanism that programs the fetus for future CVD risk. Consistent with this hypothesis, animal models of PE where progeny have been studied demonstrate causality for programming of offspring cardiovascular health by the preeclamptic environment. Shared alleles between mother and offspring, and shared lifestyle factors between mother and offspring provide alternate pathways explaining associations between PE and offspring CVD risk. In addition, adverse lifestyle habits can also act as second hits for those programmed for increased CVD risk. PE and CVD are both multifactorial diseases and, hence, identifying the relative contribution of PE to offspring risk for CVD is a very complex task. However, considering the emerging strong association between PE and CVD, those exposed to PE in utero may benefit from targeted primary CVD preventive strategies.
Collapse
|
6
|
Zhang Z, Wang X, Wang J, Zhang L. The decreased expression of Stat3 and p-Stat3 in preeclampsia-like rat placenta. J Mol Histol 2018; 49:175-183. [DOI: 10.1007/s10735-018-9757-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/18/2018] [Indexed: 11/29/2022]
|
7
|
Storme L, Luton D, Abdennebi-Najar L, Le Huërou-Luron I. [DOHaD: long-term impact of perinatal diseases (IUGR and prematurity)]. Med Sci (Paris) 2016; 32:74-80. [PMID: 26850610 DOI: 10.1051/medsci/20163201012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The first epidemiological studies showing a link between low birth weight and chronic diseases in adults did not distinguish the origins of low birth weight. A low birth weight may be the result of a premature birth. It can also be caused by an intrauterine growth restriction (IUGR). A child can be both preterm and IUGR. It is clear now that prematurity is an independent risk factor for programming chronic adult diseases. However, unlike adults born IUGR, adults born prematurely do not have an increased risk to develop metabolic syndrome (dyslipidemia or obesity). An increased risk of neurodevelopmental and psychiatric morbidity and hypertension is found after a premature birth. Mechanisms of chronic diseases programming are multiple: they involve both the cause of prematurity and IUGR such as infection / inflammation or placental insufficiency, but also consequences for therapeutic or nutritional strategies needed to support these children. This chapter describes the possible prevention of perinatal programming of noncommunicable diseases.
Collapse
Affiliation(s)
- Laurent Storme
- EA4489, environnement périnatal et santé, faculté de médecine, université Lille 2, hôpital Jeanne de Flandre, CHRU de Lille, 1, rue Eugène Avinée, Lille, France
| | - Dominique Luton
- Maternité, hôpitaux universitaires Paris Nord Val-de-Seine, Assistance publique-hôpitaux de Paris, université Paris VII, Paris, France
| | - Latifa Abdennebi-Najar
- UP 2012.10.101, Expression des gènes et régulation épigénétique par l'aliment, institut polytechnique LaSalle, Beauvais, France
| | - Isabelle Le Huërou-Luron
- UR1341, alimentation et adaptations digestives, nerveuses et comportementales, Inra, Saint-Gilles, France
| |
Collapse
|
8
|
Zana-Taieb E, Butruille L, Franco-Montoya ML, Lopez E, Vernier F, Grandvuillemin I, Evain-Brion D, Deruelle P, Baud O, Delacourt C, Jarreau PH. Effect of two models of intrauterine growth restriction on alveolarization in rat lungs: morphometric and gene expression analysis. PLoS One 2013; 8:e78326. [PMID: 24278109 PMCID: PMC3836790 DOI: 10.1371/journal.pone.0078326] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/11/2013] [Indexed: 01/21/2023] Open
Abstract
Intrauterine growth restriction (IUGR) in preterm infants increases the risk of bronchopulmonary dysplasia, characterized by arrested alveolarization. We evaluated the impact of two different rat models (nitric oxide synthase inhibition or protein deprivation) of IUGR on alveolarization, before, during, and at the end of this postnatal process. We studied IUGR rat pups of dams fed either a low protein (LPD) or a normal diet throughout gestation and pups of dams treated by continuous infusion of Nω-nitro-L-arginine methyl ester (L-NAME) or its diluent on the last four days of gestation. Morphometric parameters, alveolar surface (Svap), mean linear intercept (MLI) and radial alveolar count (RAC) and transcriptomic analysis were determined with special focus on genes involved in alveolarization. IUGR pups regained normal weight at day 21 in the two treated groups. In the LPD group, Svap, MLI and RAC were not different from those of controls at day 4, but were significantly decreased at day 21, indicating alveolarization arrest. In the L-NAME group, Svap and RAC were significantly decreased and MLI was increased at day 4 with complete correction at day 21. In the L-NAME model, several factors involved in alveolarization, VEGF, VEGF-R1 and –R2, MMP14, MMP16, FGFR3 and 4, FGF18 and 7, were significantly decreased at day 4 and/or day 10, while the various factors studied were not modified in the LPD group. These results demonstrate that only maternal protein deprivation leads to sustained impairment of alveolarization in rat pups, whereas L-NAME impairs lung development before alveolarization. Known growth factors involved in lung development do not seem to be involved in LPD-induced alveolarization disorders, raising the question of a possible programming of altered alveolarization.
Collapse
Affiliation(s)
- Elodie Zana-Taieb
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U767, Paris, France
- PremUp, Paris, France
- Service de Médecine et Réanimation néonatales de Port-Royal, Groupe hospitalier Cochin, Broca, Hôtel-Dieu, Assistance Publique – Hôpitaux de Paris, Paris, France
- Université Paris Descartes, Paris, France
- * E-mail:
| | - Laura Butruille
- Unité environnement périnatal et croissance, EA4489, Faculté de Médecine, Pôle recherche, IFR 114,Université Lille Nord de France, Lille, France
| | | | - Emmanuel Lopez
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U767, Paris, France
- PremUp, Paris, France
- Service de Médecine et Réanimation néonatales de Port-Royal, Groupe hospitalier Cochin, Broca, Hôtel-Dieu, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Flore Vernier
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U767, Paris, France
- PremUp, Paris, France
| | - Isabelle Grandvuillemin
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1076, Faculté de Pharmacie, Université de la Méditerranée. Marseille, France
| | - Danièle Evain-Brion
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U767, Paris, France
- PremUp, Paris, France
- Université Paris Descartes, Paris, France
| | - Philippe Deruelle
- Unité environnement périnatal et croissance, EA4489, Faculté de Médecine, Pôle recherche, IFR 114,Université Lille Nord de France, Lille, France
| | - Olivier Baud
- PremUp, Paris, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U676, Paris, France
- Service de Réanimation et Pédiatrie néonatales, Hôpital Robert Debré, Assistance Publique – Hôpitaux de Paris, Paris, France
- Université Paris Diderot, Paris, France
| | - Christophe Delacourt
- PremUp, Paris, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U955 IMRB Equipe 04, Créteil, France
- Service de Pneumologie Pédiatrique, Hôpital Necker-Enfants Malades, Assistance Publique – Hôpitaux de Paris, Paris, France
- Université Paris Descartes, Paris, France
| | - Pierre-Henri Jarreau
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U767, Paris, France
- PremUp, Paris, France
- Service de Médecine et Réanimation néonatales de Port-Royal, Groupe hospitalier Cochin, Broca, Hôtel-Dieu, Assistance Publique – Hôpitaux de Paris, Paris, France
- Université Paris Descartes, Paris, France
| |
Collapse
|