1
|
Li X, Yu X, Yu F, Fu C, Zhao W, Liu X, Dai C, Gao H, Cheng M, Li B. D-pinitol alleviates diabetic cardiomyopathy by inhibiting the optineurin-mediated endoplasmic reticulum stress and glycophagy signaling pathway. Phytother Res 2024; 38:1681-1694. [PMID: 38311336 DOI: 10.1002/ptr.8134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
Diabetic cardiomyopathy (DCM) is an important complication resulting in heart failure and death of diabetic patients. However, there is no effective drug for treatments. This study investigated the effect of D-pinitol (DP) on cardiac injury using diabetic mice and glycosylation injury of cardiomyocytes and its molecular mechanisms. We established the streptozotocin-induced SAMR1 and SAMP8 mice and DP (150 mg/kg/day) intragastrically and advanced glycation end-products (AGEs)-induced H9C2 cells. H9C2 cells were transfected with optineurin (OPTN) siRNA and overexpression plasmids. The metabolic disorder indices, cardiac dysfunction, histopathology, immunofluorescence, western blot, and immunoprecipitation were investigated. Our results showed that DP reduced the blood glucose and AGEs, and increased the expression of heart OPTN in diabetic mice and H9C2 cells, thereby inhibiting the endoplasmic reticulum stress (GRP78, CHOP) and glycophagy (STBD1, GABARAPL1), and alleviating the myocardial apoptosis and fibrosis of DCM. The expression of filamin A as an interaction protein of OPTN downregulated by AGEs decreased OPTN abundance. Moreover, OPTN siRNA increased the expression of GRP78, CHOP, STBD1, and GABARAPL1 and inhibited the expression of GAA via GSK3β phosphorylation and FoxO1. DP may be helpful to treat the onset of DCM. Targeting OPTN with DP could be translated into clinical application in the fighting against DCM.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Yu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Fei Yu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Chunli Fu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Wenqian Zhao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Xiaosong Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Chaochao Dai
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Haiqing Gao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Mei Cheng
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Baoying Li
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Health Management Center (East Area), Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
2
|
Du H, Ma Y, Wang X, Zhang Y, Zhu L, Shi S, Pan S, Liu Z. Advanced glycation end products induce skeletal muscle atrophy and insulin resistance via activating ROS-mediated ER stress PERK/FOXO1 signaling. Am J Physiol Endocrinol Metab 2023; 324:E279-E287. [PMID: 36724125 DOI: 10.1152/ajpendo.00218.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Skeletal muscle atrophy is often found in patients with type 2 diabetes mellitus (T2DM), which is characterized by insulin resistance. As the largest tissue in the body, skeletal muscle plays important roles in insulin resistance. Advanced glycation end products (AGEs) are a type of toxic metabolite that are representative of multiple pathophysiological changes associated with T2DM. Mice were exposed to AGEs. Forkhead box O1 (FOXO1) was silenced by using a constructed viral vector carrying siRNA. Skeletal muscle atrophy was evaluated by using hematoxylin-eosin (H&E), oil red O, myosin skeletal heavy chain (MHC), and laminin immunofluorescent stains. Reactive oxygen species (ROS) generation was assessed by using the dihydroethidium (DHE) stain. Western blotting was used to evaluate protein expression and phosphorylation. Insulin resistance was monitored via the insulin tolerance test and the glucose infusion rate (GIR). Mice exposed to AGEs showed insulin resistance, which was evidenced by reduced insulin tolerance and GIR. H&E and MHC immunofluorescent stains suggested reduced cross-sectional muscle fiber area. Laminin immunofluorescent and oil red O stains indicated increased intramuscular fibrosis and lipid deposits, respectively. Exposure to AGEs induced ROS generation, increased phosphorylation of protein kinase RNA-like endoplasmic reticulum kinase (PERK) and FOXO1, facilitated FOXO1 nuclear translocation, and elevated expression of muscle atrophy F-box (MAFbx) in gastrocnemius muscle. foxo1 silencing significantly suppressed skeletal muscle atrophy and insulin resistance without affecting ROS production. AGEs exacerbated skeletal muscle atrophy and insulin resistance by activating the PERK/FOXO1 signaling pathway in skeletal muscle.NEW & NOTEWORTHY In this study, we proposed a molecular mechanism underlying the skeletal muscle atrophy-associated insulin resistance in type 2 diabetes mellitus (T2DM). Our investigation suggests that exposure to AGEs, which are characteristic metabolites of T2DM pathology, induces the activation of reactive oxygen species (ROS)-mediated endoplasmic reticulum (ER) stress, leading to the upregulation of the protein kinase RNA-like ER kinase (PERK)/forkhead box O1 (FOXO1)/muscle atrophy F-box pathway and subsequent skeletal muscle atrophy, ultimately resulting in insulin resistance.
Collapse
Affiliation(s)
- Haixia Du
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Metabolic and Cardiovascular Diseases Laboratories, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Department 403, PLA Rocket Force University of Engineering, Xi'an, People's Republic of China
| | - Yanpeng Ma
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Metabolic and Cardiovascular Diseases Laboratories, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Xiqiang Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Metabolic and Cardiovascular Diseases Laboratories, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Yong Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Metabolic and Cardiovascular Diseases Laboratories, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Ling Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Metabolic and Cardiovascular Diseases Laboratories, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Shuang Shi
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Metabolic and Cardiovascular Diseases Laboratories, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Shuo Pan
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Metabolic and Cardiovascular Diseases Laboratories, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Metabolic and Cardiovascular Diseases Laboratories, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, People's Republic of China
| |
Collapse
|
3
|
Cao Y, Ye X, Yuan X, Liu J, Zhang Q. Serum Pentosidine is Associated with Cardiac Dysfunction and Atherosclerosis in T2DM. Diabetes Metab Syndr Obes 2023; 16:237-244. [PMID: 36760597 PMCID: PMC9885869 DOI: 10.2147/dmso.s398119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Aim The purpose of this paper is to investigate the relationship between serum pentosidine levels and cardiac function and vascular disease in diabetic patients, and to provide a new reference indicator for the early detection of diabetic cardiovascular complications. Materials and Methods This was a cross-sectional study. One hundred and twenty-two patients with type 2 diabetes were grouped by LVEF quartiles to compare the differences between their clinical data and serum pentosidine levels. Also, the correlation between serum pentosidine and clinical indicators was assessed. The effect of serum pentosidine on cardiac function and vascular stiffness was analyzed by multiple stepwise regression. Results Serum pentosidine levels were higher in patients with LVEF ≤57%. Serum pentosidine levels were positively correlated with waist-to-hip ratio, hemoglobin, AIP, baPWV, LVESD, and ARD, and negatively correlated with LVEF. Low serum pentosidine was associated with increased LVESD; high pentosidine was significantly associated with increased ARD, high AIP and high baPWV. Conclusion The results suggest that serum pentosidine, a member of AGEs, may reflect cardiac remodeling and dysfunction as well as atherosclerosis.
Collapse
Affiliation(s)
- Yuyan Cao
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Xinhua Ye
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Xiaoqing Yuan
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Juan Liu
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Qing Zhang
- Changzhou Medical Center, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| |
Collapse
|
4
|
Yu X, Wang T, Li Y, Li Y, Bai B, Fang J, Han J, Li S, Xiu Z, Liu Z, Yang X, Li Y, Zhu G, Jin N, Shang C, Li X, Zhu Y. Apoptin causes apoptosis in HepG-2 cells via Ca 2+ imbalance and activation of the mitochondrial apoptotic pathway. Cancer Med 2022; 12:8306-8318. [PMID: 36515089 PMCID: PMC10134343 DOI: 10.1002/cam4.5528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/06/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Apoptin is derived from the chicken anemia virus and exhibits specific cytotoxic effects against tumor cells. Herein, we found that Apoptin induced a strong and lasting endoplasmic reticulum (ER) stress response, Ca2+ imbalance, and triggered the mitochondrial apoptotic pathway. The aim of this study was to explore the mechanisms by which Apoptin exhibited anti-tumor effects in HepG-2 cells. METHODS The intracellular levels of calcium (Ca2+ ) were induced by ER stress and determined by electron microscopy, flow cytometry, and fluorescence staining. The mitochondrial injury was determined by mitochondrial membrane potential and electron microscopy. Western blotting was used to investigate the levels of key proteins in ER stress and the apoptotic pathway in mitochondria. The relationship between Ca2+ levels and apoptosis in Apoptin-treated cells was analyzed using a Ca2+ chelator (BAPTA-AM), flow cytometry, and fluorescence staining. We also investigated the in vivo effects of Ca2+ imbalance on the mitochondrial apoptotic pathway using tumor tissues xenografted on nude mice. RESULTS This study showed that Apoptin induced a strong and long- lasting ER stress and injury, which subsequently led to an imbalance of cellular Ca2+ levels, a reduction in the mitochondrial membrane potential, a significant extent image in the mitochondrial structure, and an increase in the expression levels of Smac/Diablo and Cyto-C. CONCLUSIONS In summary, Apoptin induced apoptosis in HepG-2 cells via Ca2+ imbalance and activation of the mitochondrial apoptotic pathway. This study provided a new direction for antitumor research in Apoptin.
Collapse
Affiliation(s)
- Xiaoyang Yu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Tongxing Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yue Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Yiquan Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Bing Bai
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Jinbo Fang
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Jicheng Han
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Shanzhi Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Zhiru Xiu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Zirui Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xia Yang
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Yaru Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Guangze Zhu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Ningyi Jin
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiao Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yilong Zhu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
5
|
Marzoog BA. Recent advances in molecular biology of metabolic syndrome pathophysiology: endothelial dysfunction as a potential therapeutic target. J Diabetes Metab Disord 2022; 21:1903-1911. [PMID: 36065330 PMCID: PMC9430013 DOI: 10.1007/s40200-022-01088-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/05/2021] [Accepted: 07/01/2022] [Indexed: 11/24/2022]
Abstract
Current advances in molecular pathobiology of endotheliocytes dysfunctions are promising in finding the pathogenetic links to the emergence of insulin resistance syndrome. Physiologically, human organism homeostasis is strictly controlled to maintain metabolic processes at the acquainted level. Many factors are involved in maintaining these physiological processes in the organism and any deviation is undoubtedly accompanied by specific pathologies related to the affected process. Fortunately, the body’s defense system can solve and compensate for the impaired function through its multi-level defense mechanisms. The endothelium is essential in maintaining this homeostasis through its ability to modulate the metabolic processes of the organism. Pathological activity or impairment of physiological endothelium function seems directly correlated to the emergence of metabolic syndrome. The most accepted hypothesis is that endothelium distribution is due to endoplasmic reticulum stress and unfolded protein response development, which includes inhibition of long non-coding RNAs expression, cytokines disbalance, Apelin dysregulation, glycocalyx degradation, and specific microparticles. Clinically, the enhancement or restoration of normal endothelial cells can be a target for novel therapeutic strategies since the distribution of its physiological activity impairs homeostasis and results in the progression of metabolic syndrome, and induction of its physiological activity can ameliorate insulin resistance syndrome. Novel insights on the molecular mechanisms of endothelial cell dysfunction are concisely represented in this paper to enhance the present therapeutic tactics and advance the research forward to find new therapeutic targets.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- Medical school student at National Research, Mordovia State University, Bolshevitskaya Street, 68, Saransk, Rep. Mordovia, Mordovia republic, Bolshevitskaya Street, 31, 430005 Saransk, Russia
| |
Collapse
|
6
|
Cui Q, Du H, Ma Y, Wang T, Zhu H, Zhu L, Pan S, Min N, Wang X, Liu Z. Matrine inhibits advanced glycation end products-induced macrophage M1 polarization by reducing DNMT3a/b-mediated DNA methylation of GPX1 promoter. Eur J Pharmacol 2022; 926:175039. [PMID: 35597264 DOI: 10.1016/j.ejphar.2022.175039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
Abstract
Advanced glycation end products (AGEs) are characterized diabetic metabolites inducing macrophage M1 polarization which is crucial in diabetes-exacerbated atherosclerosis. Matrine was proved anti-atherosclerotic. The current study was aimed to investigate the inhibitory effects of matrine on AGEs- induced macrophage M1 polarization and underlying molecular mechanisms. Primary mouse macrophages were exposed to AGEs. Receptor for AGEs (RAGE) and toll-like receptor 4 (TLR4) were over-expressed by vectors. Matrine was used to treat these cells. Inducible nitric oxide synthase (iNOS) expression and pro-inflammatory cytokine production were used to evaluate macrophage M1 polarization. Oxidative stress was assessed by intracellular reactive oxygen species (ROS) generation, total antioxidant capacity (TAC) and malondialdehyde (MDA) contents. Relative mRNA expression level was determined by real-time PCR. Western blotting was used to evaluate protein and protein phosphorylation levels. Bisulfite sequencing PCR (BSP) was used to evaluate DNA methylation. Matrine reduced AGEs exposure-elevated expressions of DNA methyltransferase (DNA MTase, DNMT)3a and DNMT3b in macrophages which were not affected by RAGE or TLR4 over expressions. DNA methylation rate of GPX1 promoter was reduced from 97.22% to 66.67% in AGEs- exposed macrophages treated by matrine. GPX1 expression was up-regulated by matrine, which further suppressed AGEs/RAGE-mediated oxidative stress. Thus, the activation of down-stream TLR4/STAT1 signaling pathway was inhibited by matrine treatment which eventually suppressed AGEs- induced macrophage M1 polarization. However, these effects of matrine were impaired by RAGE and TLR4 overexpression. Results from this study suggested that matrine inhibited AGEs- induced macrophage M1 polarization by suppressing RAGE-induced oxidative stress-mediated TLR4/STAT1 signaling pathway. Matrine exerted anti-oxidant effects via increasing GPX1 expression by inhibiting DNMT3a/b-induced GPX1 promoter DNA methylation.
Collapse
Affiliation(s)
- Qianwei Cui
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Haixia Du
- Rocket Force University of Engineering, Xi'an, 710025, China
| | - Yanpeng Ma
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ting Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Haitao Zhu
- Department of Pediatrics, Northwest Women's and Children's Hospital, Xi'an, 710061, China
| | - Ling Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shuo Pan
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ningbin Min
- Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Department of Cardiology, Heyang County Hospital, Heyang, 715300, China.
| | - Xiqiang Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
7
|
Pan S, Guan Y, Ma Y, Cui Q, Tang Z, Li J, Zu C, Zhang Y, Zhu L, Jiang J, Liu Z. Advanced glycation end products correlate with breast cancer metastasis by activating RAGE/TLR4 signaling. BMJ Open Diabetes Res Care 2022; 10:10/2/e002697. [PMID: 35346972 PMCID: PMC8961114 DOI: 10.1136/bmjdrc-2021-002697] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/06/2022] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION This study was aimed to investigate the mechanisms of advanced glycation end products (AGEs) in promoting invasion and metastasis of breast cancer. RESEARCH DESIGN AND METHODS Patients with 131 breast cancer were enrolled in a cohort and followed up to investigate the association between AGEs and metastasis. Serum AGE concentrations were detected by ELISA. Breast cancer MDA-MB-231 cells were exposed to generated AGE-bovine serum albumin (BSA). CCK-8 assay was used to select the non-cytotoxic concentrations of AGE-BSA. Small interfering RNA was used to knock down Toll-like receptor 4 (TLR4). Migration and invasion were evaluated by wound healing and transwell assays. Real-time PCR and western blotting were used to detect the gene expressions. RESULTS In the cohort study, metastasis incidence was significantly correlated with serum AGE concentrations in patients with breast cancer (adjusted OR=1.75, 95% CI=1.20 to 2.57, p=0.004). During follow-up, metastasis interval was significantly shorter in diabetic than non-diabetic subjects. In the in vitro study, AGE-BSA incubation significantly promoted migration and invasion of cancer cells in a concentration-dependent manner. AGE-BSA dramatically increased expressions of receptor for AGEs (RAGE), TLR4, myeloid differentiation factor (MyD88), matrix metalloproteinase 9 (MMP9), promoted nuclear translocation of nuclear factor κB (NFκB) p65, but decreased the expression of inhibitor of NFκB (IκBα). TLR4 silencing significantly suppressed migration and invasion of cancer cells exposed to AGE-BSA. TLR4 silencing reduced the expression of MyD88 and MMP9, as well as nuclear translocation of NFκB p65 but increased IκBα expression in AGE-BSA-incubated breast cancer cells. CONCLUSIONS AGEs are correlated with metastasis of breast cancer. AGEs' promoting effects on migration and invasion of breast cancer cells via activating RAGE/TLR4/MyD88 signaling were suggested as the involved mechanism.
Collapse
Affiliation(s)
- Shuo Pan
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yitong Guan
- Medical School, Yan'an University, Yan'an, China
| | - Yanpeng Ma
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Qianwei Cui
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhiguo Tang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jingyuan Li
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Chao Zu
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yong Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ling Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jie Jiang
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
8
|
Advanced Glycation End Products Induce Atherosclerosis via RAGE/TLR4 Signaling Mediated-M1 Macrophage Polarization-Dependent Vascular Smooth Muscle Cell Phenotypic Conversion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9763377. [PMID: 35069982 PMCID: PMC8776434 DOI: 10.1155/2022/9763377] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 12/17/2022]
Abstract
Objective. The objective of this study was to investigate the involved mechanisms of advanced glycation end product- (AGE-) exacerbated atherosclerosis (AS). Methods. Toll-like receptor 4 (TLR4) inhibitor was administrated to type 2 diabetes mellitus (T2DM) AS rats. Atherosclerotic plaque, M1 macrophage infiltration, and VSMCs phenotypes were evaluated. AGE-exposed primary macrophages were treated with specific siRNAs knocking down receptor for AGEs (RAGE) and TLR4. Phenotypes of M1 macrophage and VSMCs were identified by fluorescent stains. Contact and noncontact coculture models were established. VSMCs and macrophages were cocultured in these models. ELISA was used to detect inflammatory cytokine concentrations. Relative mRNA expression levels were determined by real-time PCR. Relative protein expression and phosphorylation levels were evaluated by Western blots assays. Results. TLR4 inhibitor treatment significantly reduced arterial stenosis, infiltration of M1 polarized macrophages, and contractile-to-synthetic phenotype conversion of VSMCs in DM AS animals. RAGE and TLR4 silencing dramatically reduced AGE-induced macrophage M1 polarization, inflammatory cytokine secretion, and RAGE/TLR4/forkhead box protein C2 (FOXC2)/signaling which inhibited delta-like ligand 4 (Dll4) expression in macrophages. AGE-treated macrophages induced VSMC phenotypic conversion via activating Notch pathway in a contact coculture model rather than a noncontact model. The VSMC phenotypic conversion induction capability of macrophages was attenuated by RAGE and TLR4 silencing. Conclusions. AGEs induced activation of RAGE/TLR4/FOXC2 signaling, which featured macrophage with Dll4 high expression during M1 polarization. These macrophages promoted contractile-synthetic phenotypic conversion of VSMCs through the Dll4/Notch pathway after direct cell-to-cell contacts.
Collapse
|
9
|
Dabravolski SA, Sukhorukov VN, Kalmykov VA, Orekhov NA, Grechko AV, Orekhov AN. Heat Shock Protein 90 as Therapeutic Target for CVDs and Heart Ageing. Int J Mol Sci 2022; 23:ijms23020649. [PMID: 35054835 PMCID: PMC8775949 DOI: 10.3390/ijms23020649] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally, representing approximately 32% of all deaths worldwide. Molecular chaperones are involved in heart protection against stresses and age-mediated accumulation of toxic misfolded proteins by regulation of the protein synthesis/degradation balance and refolding of misfolded proteins, thus supporting the high metabolic demand of the heart cells. Heat shock protein 90 (HSP90) is one of the main cardioprotective chaperones, represented by cytosolic HSP90a and HSP90b, mitochondrial TRAP1 and ER-localised Grp94 isoforms. Currently, the main way to study the functional role of HSPs is the application of HSP inhibitors, which could have a different way of action. In this review, we discussed the recently investigated role of HSP90 proteins in cardioprotection, atherosclerosis, CVDs development and the involvements of HSP90 clients in the activation of different molecular pathways and signalling mechanisms, related to heart ageing.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Str., 210026 Vitebsk, Belarus
- Correspondence:
| | - Vasily N. Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.N.S.); (V.A.K.)
- Laboratory of Medical Genetics, Russian Medical Research Center of Cardiology, Institute of Experimental Cardiology, 15-a 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| | - Vladislav A. Kalmykov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.N.S.); (V.A.K.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Nikolay A. Orekhov
- Institute for Atherosclerosis Research, 4-1-207 Osennyaya Str., 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 14-3 Solyanka Str., 109240 Moscow, Russia;
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, 4-1-207 Osennyaya Str., 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| |
Collapse
|
10
|
Passarelli M, Machado UF. AGEs-Induced and Endoplasmic Reticulum Stress/Inflammation-Mediated Regulation of GLUT4 Expression and Atherogenesis in Diabetes Mellitus. Cells 2021; 11:104. [PMID: 35011666 PMCID: PMC8750246 DOI: 10.3390/cells11010104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023] Open
Abstract
In recent decades, complex and exquisite pathways involved in the endoplasmic reticulum (ER) and inflammatory stress responses have been demonstrated to participate in the development and progression of numerous diseases, among them diabetes mellitus (DM). In those pathways, several players participate in both, reflecting a complicated interplay between ER and inflammatory stress. In DM, ER and inflammatory stress are involved in both the pathogenesis of the loss of glycemic control and the development of degenerative complications. Furthermore, hyperglycemia increases the generation of advanced glycation end products (AGEs), which in turn refeed ER and inflammatory stress, contributing to worsening glycemic homeostasis and to accelerating the development of DM complications. In this review, we present the current knowledge regarding AGEs-induced and ER/inflammation-mediated regulation of the expression of GLUT4 (solute carrier family 2, facilitated glucose transporter member 4), as a marker of glycemic homeostasis and of cardiovascular disease (CVD) development/progression, as a leading cause of morbidity and mortality in DM.
Collapse
Affiliation(s)
- Marisa Passarelli
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil;
- Programa de Pos-Graduação em Medicina, Universidade Nove de Julho, São Paulo 01525-000, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
11
|
Qin XF, Shan YG, Gao JH, Li FX, Guo YX. E3 ubiquitin ligase mind bomb 1 overexpression reduces apoptosis and inflammation of cardiac microvascular endothelial cells in coronary microvascular dysfunction. Cell Signal 2021; 91:110223. [PMID: 34954392 DOI: 10.1016/j.cellsig.2021.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND The apoptosis and inflammation in cardiac microvascular endothelial cells (CMECs) promote the development of coronary microvascular dysfunction (CMD). The present study aimed to explore the role of E3 ubiquitin ligase mind bomb 1 (MIB1) in the apoptosis and inflammation in CMECs during CMD. METHODS In vivo, CMD in rats was induced by sodium laurate injection. In vitro, rat primary CMECs were stimulated by homocysteine (Hcy). The apoptosis of CMECs was measured using flow cytometry. The inflammation of CMECs was evaluated by the level of tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β). The interplay between MIB1 and mitogen-activated protein kinase kinase kinase 5 (map3k5, also called ASK1) was measured using Co-immunoprecipitation. RESULTS MIB1 expression was decreased and ASK1 expression was increased in the heart tissues of CMD rats and Hcy-treated CMECs. MIB1 overexpression decreased fibrinogen-like protein 2 (FGL2) secretion, inflammation, and apoptosis induced by Hcy in CMECs. Meanwhile, MIB1 overexpression decreased the protein levels of ASK1 and p38, while not affected ASK1 mRNA levels. The following mechanism experiments revealed that MIB1 downregulated ASK1 expression by increasing its ubiquitination. ASK1 overexpression reversed the inhibitory effect of MIB1 on FGL2 secretion, apoptosis, inflammation, and p38 activation in Hcy-treated CMECs. In CMD rats, MIB1 overexpression partly retarded CMD progression, manifesting as increased coronary capillary density and decreased microthrombi formation. CONCLUSION MIB1 overexpression relieved apoptosis and inflammation of CMECs during CMD by targeting the ASK1/p38 pathway.
Collapse
Affiliation(s)
- Xiao-Fei Qin
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Ying-Guang Shan
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jing-Hong Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Feng-Xiang Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yu-Xi Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
12
|
Unfolded protein response during cardiovascular disorders: a tilt towards pro-survival and cellular homeostasis. Mol Cell Biochem 2021; 476:4061-4080. [PMID: 34259975 DOI: 10.1007/s11010-021-04223-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that orchestrates the production and proper assembly of an extensive types of secretory and membrane proteins. Endoplasmic reticulum stress is conventionally related to prolonged disruption in the protein folding machinery resulting in the accumulation of unfolded proteins in the ER. This disruption is often manifested due to oxidative stress, Ca2+ leakage, iron imbalance, disease conditions which in turn hampers the cellular homeostasis and induces cellular apoptosis. A mild ER stress is often reverted back to normal. However, cells retaliate to acute ER stress by activating the unfolded protein response (UPR) which comprises three signaling pathways, Activating transcription factor 6 (ATF6), inositol requiring enzyme 1 alpha (IRE1α), and protein kinase RNA-activated-like ER kinase (PERK). The UPR response participates in both protective and pro-apoptotic responses and not much is known about the mechanistic aspects of the switch from pro-survival to pro-apoptosis. When ER stress outpaces UPR response then cell apoptosis prevails which often leads to the development of various diseases including cardiomyopathies. Therefore, it is important to identify molecules that modulate the UPR that may serve as promising tools towards effective treatment of cardiovascular diseases. In this review, we elucidated the latest advances in construing the contribution imparted by the three arms of UPR to combat the adverse environment in the ER to restore cellular homeostasis during cardiomyopathies. We also summarized the various therapeutic agents that plays crucial role in tilting the UPR response towards pro-survival.
Collapse
|