1
|
Grybchuk‐Ieremenko A, Lipovská K, Kouřilová X, Obruča S, Dvořák P. An Initial Genome Editing Toolset for Caldimonas thermodepolymerans, the First Model of Thermophilic Polyhydroxyalkanoates Producer. Microb Biotechnol 2025; 18:e70103. [PMID: 39980168 PMCID: PMC11842462 DOI: 10.1111/1751-7915.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/22/2025] Open
Abstract
The limited number of well-characterised model bacteria cannot address all the challenges in a circular bioeconomy. Therefore, there is a growing demand for new production strains with enhanced resistance to extreme conditions, versatile metabolic capabilities and the ability to utilise cost-effective renewable resources while efficiently generating attractive biobased products. Particular thermophilic microorganisms fulfil these requirements. Non-virulent Gram-negative Caldimonas thermodepolymerans DSM15344 is one such attractive thermophile that efficiently converts a spectrum of plant biomass sugars into high quantities of polyhydroxyalkanoates (PHA)-a fully biodegradable substitutes for synthetic plastics. However, to enhance its biotechnological potential, the bacterium needs to be 'domesticated'. In this study, we established effective homologous recombination and transposon-based genome editing systems for C. thermodepolymerans. By optimising the electroporation protocol and refining counterselection methods, we achieved significant improvements in genetic manipulation and constructed the AI01 chassis strain with improved transformation efficiency and a ΔphaC mutant that will be used to study the importance of PHA synthesis in Caldimonas. The advances described herein highlight the need for tailored approaches when working with thermophilic bacteria and provide a springboard for further genetic and metabolic engineering of C. thermodepolymerans, which can be considered the first model of thermophilic PHA producer.
Collapse
Affiliation(s)
- Anastasiia Grybchuk‐Ieremenko
- Department of Experimental Biology (Section of Microbiology), Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Kristýna Lipovská
- Department of Experimental Biology (Section of Microbiology), Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Xenie Kouřilová
- Faculty of Chemistry, Institute of Food Science and BiotechnologyBrno University of TechnologyBrnoCzech Republic
| | - Stanislav Obruča
- Faculty of Chemistry, Institute of Food Science and BiotechnologyBrno University of TechnologyBrnoCzech Republic
| | - Pavel Dvořák
- Department of Experimental Biology (Section of Microbiology), Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
2
|
Sitara A, Hocq R, Horvath J, Pflügl S. Industrial biotechnology goes thermophilic: Thermoanaerobes as promising hosts in the circular carbon economy. BIORESOURCE TECHNOLOGY 2024; 408:131164. [PMID: 39069138 DOI: 10.1016/j.biortech.2024.131164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Transitioning away from fossil feedstocks is imperative to mitigate climate change, and necessitates the utilization of renewable, alternative carbon and energy sources to foster a circular carbon economy. In this context, lignocellulosic biomass and one-carbon compounds emerge as promising feedstocks that could be renewably upgraded by thermophilic anaerobes (thermoanaerobes) via gas fermentation or consolidated bioprocessing to value-added products. In this review, the potential of thermoanaerobes for cost-efficient, effective and sustainable bioproduction is discussed. Metabolic and bioprocess engineering approaches are reviewed to draw a comprehensive picture of current developments and future perspectives for the conversion of renewable feedstocks to chemicals and fuels of interest. Selected bioprocessing scenarios are outlined, offering practical insights into the applicability of thermoanaerobes at a large scale. Collectively, the potential advantages of thermoanaerobes regarding process economics could facilitate an easier transition towards sustainable bioprocesses with renewable feedstocks.
Collapse
Affiliation(s)
- Angeliki Sitara
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Rémi Hocq
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; CIRCE Biotechnologie GmbH, Kerpengasse 125, 1210 Vienna, Austria
| | - Josef Horvath
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| |
Collapse
|
3
|
Kim SK, Bomble YJ, Westpheling J. Simultaneous expression of an endogenous spermidine synthase and a butanol dehydrogenase from Thermoanaerobacter pseudethanolicus in Clostridium thermocellum results in increased resistance to acetic acid and furans, increased ethanol production and an increase in thermotolerance. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:46. [PMID: 36918887 PMCID: PMC10012442 DOI: 10.1186/s13068-023-02291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Sensitivity to inhibitors derived from the pretreatment of plant biomass is a barrier to the consolidated bioprocessing of these complex substrates to fuels and chemicals by microbes. Spermidine is a low molecular weight aliphatic nitrogen compound ubiquitous in microorganisms, plants, and animals and is often associated with tolerance to stress. We recently showed that overexpression of the endogenous spermidine synthase enhanced tolerance of the Gram-positive bacterium, Clostridium thermocellum to the furan derivatives furfural and HMF. RESULTS Here we show that co-expression with an NADPH-dependent heat-stable butanol dehydrogenase from Thermoanaerobacter pseudethanolicus further enhanced tolerance to furans and acetic acid and most strikingly resulted in an increase in thermotolerance at 65 °C. CONCLUSIONS Tolerance to fermentation inhibitors will facilitate the use of plant biomass substrates by thermophiles in general and this organism in particular. The ability to grow C. thermocellum at 65 °C has profound implications for metabolic engineering.
Collapse
Affiliation(s)
- Sun-Ki Kim
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.,Oak Ridge National Laboratory, The BioEnergy Science Center and The Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA.,Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Yannick J Bomble
- Oak Ridge National Laboratory, The BioEnergy Science Center and The Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA.,Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Janet Westpheling
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA. .,Oak Ridge National Laboratory, The BioEnergy Science Center and The Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
4
|
Bourgade B, Minton NP, Islam MA. Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms. FEMS Microbiol Rev 2021; 45:fuab008. [PMID: 33595667 PMCID: PMC8351756 DOI: 10.1093/femsre/fuab008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Unabated mining and utilisation of petroleum and petroleum resources and their conversion to essential fuels and chemicals have drastic environmental consequences, contributing to global warming and climate change. In addition, fossil fuels are finite resources, with a fast-approaching shortage. Accordingly, research efforts are increasingly focusing on developing sustainable alternatives for chemicals and fuels production. In this context, bioprocesses, relying on microorganisms, have gained particular interest. For example, acetogens use the Wood-Ljungdahl pathway to grow on single carbon C1-gases (CO2 and CO) as their sole carbon source and produce valuable products such as acetate or ethanol. These autotrophs can, therefore, be exploited for large-scale fermentation processes to produce industrially relevant chemicals from abundant greenhouse gases. In addition, genetic tools have recently been developed to improve these chassis organisms through synthetic biology approaches. This review will focus on the challenges of genetically and metabolically modifying acetogens. It will first discuss the physical and biochemical obstacles complicating successful DNA transfer in these organisms. Current genetic tools developed for several acetogens, crucial for strain engineering to consolidate and expand their catalogue of products, will then be described. Recent tool applications for metabolic engineering purposes to allow redirection of metabolic fluxes or production of non-native compounds will lastly be covered.
Collapse
Affiliation(s)
- Barbara Bourgade
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, University of Nottingham, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - M Ahsanul Islam
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| |
Collapse
|
5
|
Walker JE, Lanahan AA, Zheng T, Toruno C, Lynd LR, Cameron JC, Olson DG, Eckert CA. Development of both type I-B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum. Metab Eng Commun 2020; 10:e00116. [PMID: 31890588 PMCID: PMC6926293 DOI: 10.1016/j.mec.2019.e00116] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022] Open
Abstract
The robust lignocellulose-solubilizing activity of C. thermocellum makes it a top candidate for consolidated bioprocessing for biofuel production. Genetic techniques for C. thermocellum have lagged behind model organisms thus limiting attempts to improve biofuel production. To improve our ability to engineer C. thermocellum, we characterized a native Type I-B and heterologous Type II Clustered Regularly-Interspaced Short Palindromic Repeat (CRISPR)/cas (CRISPR associated) systems. We repurposed the native Type I-B system for genome editing. We tested three thermophilic Cas9 variants (Type II) and found that GeoCas9, isolated from Geobacillus stearothermophilus, is active in C. thermocellum. We employed CRISPR-mediated homology directed repair to introduce a nonsense mutation into pyrF. For both editing systems, homologous recombination between the repair template and the genome appeared to be the limiting step. To overcome this limitation, we tested three novel thermophilic recombinases and demonstrated that exo/beta homologs, isolated from Acidithiobacillus caldus, are functional in C. thermocellum. For the Type I-B system an engineered strain, termed LL1586, yielded 40% genome editing efficiency at the pyrF locus and when recombineering machinery was expressed this increased to 71%. For the Type II GeoCas9 system, 12.5% genome editing efficiency was observed and when recombineering machinery was expressed, this increased to 94%. By combining the thermophilic CRISPR system (either Type I-B or Type II) with the recombinases, we developed a new tool that allows for efficient CRISPR editing. We are now poised to enable CRISPR technologies to better engineer C. thermocellum for both increased lignocellulose degradation and biofuel production.
Collapse
Key Words
- 5-FOA, 5-fluoroorotic acid
- CFU, colony forming unit
- CRISPR
- CRISPR/Cas, Clustered Regularly-Interspaced Short Palindromic Repeat/CRISPR associated
- Cas9
- Cas9n, nickase Cas9
- Clostridium thermocellum
- HDR, homology-directed repair
- HR, homologous recombination
- PAM, protospacer adjacent motif
- RNP, Cas9-sgRNA ribonucleoprotein
- Thermophilic recombineering
- Tm, thiamphenicol
- Type I–B
- sgRNA, single guide RNA
Collapse
Affiliation(s)
- Julie E. Walker
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80303, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Anthony A. Lanahan
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Tianyong Zheng
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Camilo Toruno
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Lee R. Lynd
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Jeffrey C. Cameron
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80303, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Department of Biochemistry, University of Colorado, Boulder, CO, 80303, USA
- National Renewable Energy Laboratory, Biosciences Center, Golden, USA
| | - Daniel G. Olson
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Carrie A. Eckert
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80303, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- National Renewable Energy Laboratory, Biosciences Center, Golden, USA
| |
Collapse
|
6
|
Blumer-Schuette SE. Insights into Thermophilic Plant Biomass Hydrolysis from Caldicellulosiruptor Systems Biology. Microorganisms 2020; 8:E385. [PMID: 32164310 PMCID: PMC7142884 DOI: 10.3390/microorganisms8030385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 11/16/2022] Open
Abstract
Plant polysaccharides continue to serve as a promising feedstock for bioproduct fermentation. However, the recalcitrant nature of plant biomass requires certain key enzymes, including cellobiohydrolases, for efficient solubilization of polysaccharides. Thermostable carbohydrate-active enzymes are sought for their stability and tolerance to other process parameters. Plant biomass degrading microbes found in biotopes like geothermally heated water sources, compost piles, and thermophilic digesters are a common source of thermostable enzymes. While traditional thermophilic enzyme discovery first focused on microbe isolation followed by functional characterization, metagenomic sequences are negating the initial need for species isolation. Here, we summarize the current state of knowledge about the extremely thermophilic genus Caldicellulosiruptor, including genomic and metagenomic analyses in addition to recent breakthroughs in enzymology and genetic manipulation of the genus. Ten years after completing the first Caldicellulosiruptor genome sequence, the tools required for systems biology of this non-model environmental microorganism are in place.
Collapse
|
7
|
Nora LC, Westmann CA, Guazzaroni ME, Siddaiah C, Gupta VK, Silva-Rocha R. Recent advances in plasmid-based tools for establishing novel microbial chassis. Biotechnol Adv 2019; 37:107433. [PMID: 31437573 DOI: 10.1016/j.biotechadv.2019.107433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/11/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022]
Abstract
A key challenge for domesticating alternative cultivable microorganisms with biotechnological potential lies in the development of innovative technologies. Within this framework, a myriad of genetic tools has flourished, allowing the design and manipulation of complex synthetic circuits and genomes to become the general rule in many laboratories rather than the exception. More recently, with the development of novel technologies such as DNA automated synthesis/sequencing and powerful computational tools, molecular biology has entered the synthetic biology era. In the beginning, most of these technologies were established in traditional microbial models (known as chassis in the synthetic biology framework) such as Escherichia coli and Saccharomyces cerevisiae, enabling fast advances in the field and the validation of fundamental proofs of concept. However, it soon became clear that these organisms, although extremely useful for prototyping many genetic tools, were not ideal for a wide range of biotechnological tasks due to intrinsic limitations in their molecular/physiological properties. Over the last decade, researchers have been facing the great challenge of shifting from these model systems to non-conventional chassis with endogenous capacities for dealing with specific tasks. The key to address these issues includes the generation of narrow and broad host plasmid-based molecular tools and the development of novel methods for engineering genomes through homologous recombination systems, CRISPR/Cas9 and other alternative methods. Here, we address the most recent advances in plasmid-based tools for the construction of novel cell factories, including a guide for helping with "build-your-own" microbial host.
Collapse
Affiliation(s)
- Luísa Czamanski Nora
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Cauã Antunes Westmann
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - María-Eugenia Guazzaroni
- Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | | | - Vijai Kumar Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Rafael Silva-Rocha
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
| |
Collapse
|
8
|
Tian L, Conway PM, Cervenka ND, Cui J, Maloney M, Olson DG, Lynd LR. Metabolic engineering of Clostridium thermocellum for n-butanol production from cellulose. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:186. [PMID: 31367231 PMCID: PMC6652007 DOI: 10.1186/s13068-019-1524-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/05/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Biofuel production from plant cell walls offers the potential for sustainable and economically attractive alternatives to petroleum-based products. In particular, Clostridium thermocellum is a promising host for consolidated bioprocessing (CBP) because of its strong native ability to ferment cellulose. RESULTS We tested 12 different enzyme combinations to identify an n-butanol pathway with high titer and thermostability in C. thermocellum. The best producing strain contained the thiolase-hydroxybutyryl-CoA dehydrogenase-crotonase (Thl-Hbd-Crt) module from Thermoanaerobacter thermosaccharolyticum, the trans-enoyl-CoA reductase (Ter) enzyme from Spirochaeta thermophila and the butyraldehyde dehydrogenase and alcohol dehydrogenase (Bad-Bdh) module from Thermoanaerobacter sp. X514 and was able to produce 88 mg/L n-butanol. The key enzymes from this combination were further optimized by protein engineering. The Thl enzyme was engineered by introducing homologous mutations previously identified in Clostridium acetobutylicum. The Hbd and Ter enzymes were engineered for changes in cofactor specificity using the CSR-SALAD algorithm to guide the selection of mutations. The cofactor engineering of Hbd had the unexpected side effect of also increasing activity by 50-fold. CONCLUSIONS Here we report engineering C. thermocellum to produce n-butanol. Our initial pathway designs resulted in low levels (88 mg/L) of n-butanol production. By engineering the protein sequence of key enzymes in the pathway, we increased the n-butanol titer by 2.2-fold. We further increased n-butanol production by adding ethanol to the growth media. By combining all these improvements, the engineered strain was able to produce 357 mg/L of n-butanol from cellulose within 120 h.
Collapse
Affiliation(s)
- Liang Tian
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | | | | | - Jingxuan Cui
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 USA
| | - Marybeth Maloney
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Daniel G. Olson
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Lee R. Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 USA
| |
Collapse
|
9
|
Seo H, Lee JW, Garcia S, Trinh CT. Single mutation at a highly conserved region of chloramphenicol acetyltransferase enables isobutyl acetate production directly from cellulose by Clostridium thermocellum at elevated temperatures. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:245. [PMID: 31636704 PMCID: PMC6792240 DOI: 10.1186/s13068-019-1583-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/01/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Esters are versatile chemicals and potential drop-in biofuels. To develop a sustainable production platform, microbial ester biosynthesis using alcohol acetyltransferases (AATs) has been studied for decades. Volatility of esters endows high-temperature fermentation with advantageous downstream product separation. However, due to the limited thermostability of AATs known, the ester biosynthesis has largely relied on use of mesophilic microbes. Therefore, developing thermostable AATs is important for ester production directly from lignocellulosic biomass by the thermophilic consolidated bioprocessing (CBP) microbes, e.g., Clostridium thermocellum. RESULTS In this study, we engineered a thermostable chloramphenicol acetyltransferase from Staphylococcus aureus (CATSa) for enhanced isobutyl acetate production at elevated temperatures. We first analyzed the broad alcohol substrate range of CATSa. Then, we targeted a highly conserved region in the binding pocket of CATSa for mutagenesis. The mutagenesis revealed that F97W significantly increased conversion of isobutanol to isobutyl acetate. Using CATSa F97W, we demonstrated direct conversion of cellulose into isobutyl acetate by an engineered C. thermocellum at elevated temperatures. CONCLUSIONS This study highlights that CAT is a potential thermostable AAT that can be harnessed to develop the thermophilic CBP microbial platform for biosynthesis of designer bioesters directly from lignocellulosic biomass.
Collapse
Affiliation(s)
- Hyeongmin Seo
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Jong-Won Lee
- Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Sergio Garcia
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Cong T. Trinh
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN USA
| |
Collapse
|
10
|
Hon S, Holwerda EK, Worthen RS, Maloney MI, Tian L, Cui J, Lin PP, Lynd LR, Olson DG. Expressing the Thermoanaerobacterium saccharolyticum pforA in engineered Clostridium thermocellum improves ethanol production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:242. [PMID: 30202437 PMCID: PMC6125887 DOI: 10.1186/s13068-018-1245-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/27/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Clostridium thermocellum has been the subject of multiple metabolic engineering strategies to improve its ability to ferment cellulose to ethanol, with varying degrees of success. For ethanol production in C. thermocellum, the conversion of pyruvate to acetyl-CoA is catalyzed primarily by the pyruvate ferredoxin oxidoreductase (PFOR) pathway. Thermoanaerobacterium saccharolyticum, which was previously engineered to produce ethanol of high yield (> 80%) and titer (70 g/L), also uses a pyruvate ferredoxin oxidoreductase, pforA, for ethanol production. RESULTS Here, we introduced the T. saccharolyticum pforA and ferredoxin into C. thermocellum. The introduction of pforA resulted in significant improvements to ethanol yield and titer in C. thermocellum grown on 50 g/L of cellobiose, but only when four other T. saccharolyticum genes (adhA, nfnA, nfnB, and adhEG544D ) were also present. T. saccharolyticum ferredoxin did not have any observable impact on ethanol production. The improvement to ethanol production was sustained even when all annotated native C. thermocellum pfor genes were deleted. On high cellulose concentrations, the maximum ethanol titer achieved by this engineered C. thermocellum strain from 100 g/L Avicel was 25 g/L, compared to 22 g/L for the reference strain, LL1319 (adhA(Tsc)-nfnAB(Tsc)-adhEG544D (Tsc)) under similar conditions. In addition, we also observed that deletion of the C. thermocellum pfor4 results in a significant decrease in isobutanol production. CONCLUSIONS Here, we demonstrate that the pforA gene can improve ethanol production in C. thermocellum as part of the T. saccharolyticum pyruvate-to-ethanol pathway. In our previous strain, high-yield (~ 75% of theoretical) ethanol production could be achieved with at most 20 g/L substrate. In this strain, high-yield ethanol production can be achieved up to 50 g/L substrate. Furthermore, the introduction of pforA increased the maximum titer by 14%.
Collapse
Affiliation(s)
- Shuen Hon
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
| | - Evert K. Holwerda
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
| | - Robert S. Worthen
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
| | - Marybeth I. Maloney
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
| | - Liang Tian
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
| | - Jingxuan Cui
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 USA
| | - Paul P. Lin
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Lee R. Lynd
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 USA
| | - Daniel G. Olson
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
| |
Collapse
|
11
|
Engineering a spermidine biosynthetic pathway in Clostridium thermocellum results in increased resistance to furans and increased ethanol production. Metab Eng 2018; 49:267-274. [DOI: 10.1016/j.ymben.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/27/2018] [Accepted: 09/04/2018] [Indexed: 12/29/2022]
|
12
|
Groom J, Chung D, Kim SK, Guss A, Westpheling J. Deletion of the Clostridium thermocellum recA gene reveals that it is required for thermophilic plasmid replication but not plasmid integration at homologous DNA sequences. J Ind Microbiol Biotechnol 2018; 45:753-763. [PMID: 29808293 PMCID: PMC6483729 DOI: 10.1007/s10295-018-2049-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/19/2018] [Indexed: 12/30/2022]
Abstract
A limitation to the engineering of cellulolytic thermophiles is the availability of functional, thermostable (≥ 60 °C) replicating plasmid vectors for rapid expression and testing of genes that provide improved or novel fuel molecule production pathways. A series of plasmid vectors for genetic manipulation of the cellulolytic thermophile Caldicellulosiruptor bescii has recently been extended to Clostridium thermocellum, another cellulolytic thermophile that very efficiently solubilizes plant biomass and produces ethanol. While the C. bescii pBAS2 replicon on these plasmids is thermostable, the use of homologous promoters, signal sequences and genes led to undesired integration into the bacterial chromosome, a result also observed with less thermostable replicating vectors. In an attempt to overcome undesired plasmid integration in C. thermocellum, a deletion of recA was constructed. As expected, C. thermocellum ∆recA showed impaired growth in chemically defined medium and an increased susceptibility to UV damage. Interestingly, we also found that recA is required for replication of the C. bescii thermophilic plasmid pBAS2 in C. thermocellum, but it is not required for replication of plasmid pNW33N. In addition, the C. thermocellum recA mutant retained the ability to integrate homologous DNA into the C. thermocellum chromosome. These data indicate that recA can be required for replication of certain plasmids, and that a recA-independent mechanism exists for the integration of homologous DNA into the C. thermocellum chromosome. Understanding thermophilic plasmid replication is not only important for engineering of these cellulolytic thermophiles, but also for developing genetic systems in similar new potentially useful non-model organisms.
Collapse
Affiliation(s)
- Joseph Groom
- Department of Genetics, Davison Life Sciences Building, University of Georgia, Athens, GA, 30602, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98105, USA
- Oak Ridge National Laboratory, The Center for BioEnergy Innovation, Oak Ridge, TN, 37831, USA
| | - Daehwan Chung
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, 80401, USA
- Oak Ridge National Laboratory, The BioEnergy Science Center, Oak Ridge, TN, 37831, USA
- Oak Ridge National Laboratory, The Center for BioEnergy Innovation, Oak Ridge, TN, 37831, USA
| | - Sun-Ki Kim
- Department of Genetics, Davison Life Sciences Building, University of Georgia, Athens, GA, 30602, USA
- Oak Ridge National Laboratory, The BioEnergy Science Center, Oak Ridge, TN, 37831, USA
- Oak Ridge National Laboratory, The Center for BioEnergy Innovation, Oak Ridge, TN, 37831, USA
| | - Adam Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Oak Ridge National Laboratory, The BioEnergy Science Center, Oak Ridge, TN, 37831, USA
- Oak Ridge National Laboratory, The Center for BioEnergy Innovation, Oak Ridge, TN, 37831, USA
| | - Janet Westpheling
- Department of Genetics, Davison Life Sciences Building, University of Georgia, Athens, GA, 30602, USA.
- Oak Ridge National Laboratory, The BioEnergy Science Center, Oak Ridge, TN, 37831, USA.
- Oak Ridge National Laboratory, The Center for BioEnergy Innovation, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
13
|
Zou X, Ren Z, Wang N, Cheng Y, Jiang Y, Wang Y, Xu C. Function analysis of 5'-UTR of the cellulosomal xyl- doc cluster in Clostridium papyrosolvens. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:43. [PMID: 29467821 PMCID: PMC5815224 DOI: 10.1186/s13068-018-1040-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 02/02/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Anaerobic, mesophilic, and cellulolytic Clostridium papyrosolvens produces an efficient cellulolytic extracellular complex named cellulosome that hydrolyzes plant cell wall polysaccharides into simple sugars. Its genome harbors two long cellulosomal clusters: cip-cel operon encoding major cellulosome components (including scaffolding) and xyl-doc gene cluster encoding hemicellulases. Compared with works on cip-cel operon, there are much fewer studies on xyl-doc mainly due to its rare location in cellulolytic clostridia. Sequence analysis of xyl-doc revealed that it harbors a 5' untranslated region (5'-UTR) which potentially plays a role in the regulation of downstream gene expression. Here, we analyzed the function of 5'-UTR of xyl-doc cluster in C. papyrosolvens in vivo via transformation technology developed in this study. RESULTS In this study, we firstly developed an electrotransformation method for C. papyrosolvens DSM 2782 before the analysis of 5'-UTR of xyl-doc cluster. In the optimized condition, a field with an intensity of 7.5-9.0 kV/cm was applied to a cuvette (0.2 cm gap) containing a mixture of plasmid and late cell suspended in exponential phase to form a 5 ms pulse in a sucrose-containing buffer. Afterwards, the putative promoter and the 5'-UTR of xyl-doc cluster were determined by sequence alignment. It is indicated that xyl-doc possesses a long conservative 5'-UTR with a complex secondary structure encompassing at least two perfect stem-loops which are potential candidates for controlling the transcriptional termination. In the last step, we employed an oxygen-independent flavin-based fluorescent protein (FbFP) as a quantitative reporter to analyze promoter activity and 5'-UTR function in vivo. It revealed that 5'-UTR significantly blocked transcription of downstream genes, but corn stover can relieve its suppression. CONCLUSIONS In the present study, our results demonstrated that 5'-UTR of the cellulosomal xyl-doc cluster blocks the transcriptional activity of promoter. However, some substrates, such as corn stover, can relieve the effect of depression of 5'-UTR. Thus, it is speculated that 5'-UTR of xyl-doc was a putative riboswitch to regulate the expression of downstream cellulosomal genes, which is helpful to understand the complex regulation of cellulosome.
Collapse
Affiliation(s)
- Xia Zou
- Research Center for Harmful Algae and Marine Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632 Guangdong Province China
| | - Zhenxing Ren
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006 Shanxi Province China
| | - Na Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 Shanxi Province China
| | - Yin Cheng
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 Shanxi Province China
| | - Yuanyuan Jiang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 Shanxi Province China
| | - Yan Wang
- Research Center for Harmful Algae and Marine Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632 Guangdong Province China
| | - Chenggang Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 Shanxi Province China
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and BioProcess Technology, Chinese Academy of Sciences, Qingdao, 266101 Shandong Province China
| |
Collapse
|
14
|
Rydzak T, Garcia D, Stevenson DM, Sladek M, Klingeman DM, Holwerda EK, Amador-Noguez D, Brown SD, Guss AM. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum. Metab Eng 2017; 41:182-191. [PMID: 28400329 DOI: 10.1016/j.ymben.2017.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/27/2017] [Accepted: 04/07/2017] [Indexed: 12/25/2022]
Abstract
Clostridium thermocellum rapidly deconstructs cellulose and ferments resulting hydrolysis products into ethanol and other products, and is thus a promising platform organism for the development of cellulosic biofuel production via consolidated bioprocessing. While recent metabolic engineering strategies have targeted eliminating canonical fermentation products (acetate, lactate, formate, and H2), C. thermocellum also secretes amino acids, which has limited ethanol yields in engineered strains to approximately 70% of the theoretical maximum. To investigate approaches to decrease amino acid secretion, we attempted to reduce ammonium assimilation by deleting the Type I glutamine synthetase (glnA) in an essentially wild type strain of C. thermocellum. Deletion of glnA reduced levels of secreted valine and total amino acids by 53% and 44% respectively, and increased ethanol yields by 53%. RNA-seq analysis revealed that genes encoding the RNF-complex were more highly expressed in ΔglnA and may have a role in improving NADH-availability for ethanol production. While a significant up-regulation of genes involved in nitrogen assimilation and urea uptake suggested that deletion of glnA induces a nitrogen starvation response, metabolomic analysis showed an increase in intracellular glutamine levels indicative of nitrogen-rich conditions. We propose that deletion of glnA causes deregulation of nitrogen metabolism, leading to overexpression of nitrogen metabolism genes and, in turn, elevated glutamine levels. Here we demonstrate that perturbation of nitrogen assimilation is a promising strategy to redirect flux from the production of nitrogenous compounds toward biofuels in C. thermocellum.
Collapse
Affiliation(s)
- Thomas Rydzak
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - David Garcia
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Margaret Sladek
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Dawn M Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Evert K Holwerda
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; Thayer School of Engineering at Dartmouth College, Hanover, NH, United States
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven D Brown
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Adam M Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States.
| |
Collapse
|
15
|
Kim SK, Groom J, Chung D, Elkins J, Westpheling J. Expression of a heat-stable NADPH-dependent alcohol dehydrogenase from Thermoanaerobacter pseudethanolicus 39E in Clostridium thermocellum 1313 results in increased hydroxymethylfurfural resistance. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:66. [PMID: 28331542 PMCID: PMC5353787 DOI: 10.1186/s13068-017-0750-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/09/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Resistance to deconstruction is a major limitation to the use of lignocellulosic biomass as a substrate for the production of fuels and chemicals. Consolidated bioprocessing (CBP), the use of microbes for the simultaneous hydrolysis of lignocellulose into soluble sugars and fermentation of the resulting sugars to products of interest, is a potential solution to this obstacle. The pretreatment of plant biomass, however, releases compounds that are inhibitory to the growth of microbes used for CBP. RESULTS Heterologous expression of the Thermoanaerobacter pseudethanolicus 39E bdhA gene, that encodes an alcohol dehydrogenase, in Clostridium thermocellum significantly increased resistance to furan derivatives at concentrations found in acid-pretreated biomass. The mechanism of detoxification of hydroxymethylfurfural was shown to be primarily reduction using NADPH as the cofactor. In addition, we report the construction of new expression vectors for homologous and heterologous expression in C. thermocellum. These vectors use regulatory signals from both C. bescii (the S-layer promoter) and C. thermocellum (the enolase promoter) shown to efficiently drive expression of the BdhA enzyme. CONCLUSIONS Toxic compounds present in lignocellulose hydrolysates that inhibit cell growth and product formation are obstacles to the commercialization of fuels and chemicals from biomass. Expression of genes that reduce the effect of these inhibitors, such as furan derivatives, will serve to enable commercial processes using plant biomass for the production of fuels and chemicals.
Collapse
Affiliation(s)
- Sun-Ki Kim
- Department of Genetics, University of Georgia, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Joseph Groom
- Department of Genetics, University of Georgia, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Daehwan Chung
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - James Elkins
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Janet Westpheling
- Department of Genetics, University of Georgia, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| |
Collapse
|