1
|
Ishibashi H, Nishimura S, Tanaka K, Haruta S, Takayama K, Yamashiro H, Takeuchi I. Transcriptome analysis reveals limited toxic effects of the UV-filter benzophenone-3 (BP-3) on the hermatypic coral Acropora tenuis and its symbiotic dinoflagellates. MARINE POLLUTION BULLETIN 2024; 201:116260. [PMID: 38522341 DOI: 10.1016/j.marpolbul.2024.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
This study aimed to investigate the toxic and transcriptomic effects of the ultraviolet filter benzophenone-3 (BP-3) on Acropora tenuis and its symbiotic dinoflagellates while using acetone as a solvent. Seven-day exposure to 50 and 500 μg/L, which is higher than most BP-3 records from coastal waters, did not affect coral colour or dinoflagellate photosynthesis. Differentially expressed genes (DEGs) between seawater and solvent controls were <20 in both corals and dinoflagellates. Eleven coral DEGs were detected after treatment with 50 μg/L BP-3. Fourteen coral DEGs, including several fluorescent protein genes, were detected after treatment with 500 μg/L BP-3. In contrast, no dinoflagellate DEGs were detected in the BP-3 treatment group. These results suggest that the effects of 50-500 μg/L BP-3 on adult A. tenuis and its dinoflagellates are limited. Our experimental methods with lower acetone toxicity provide a basis for establishing standard ecotoxicity tests for corals.
Collapse
Affiliation(s)
- Hiroshi Ishibashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Saori Nishimura
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Kokoro Tanaka
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Shinsuke Haruta
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Kotaro Takayama
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Hideyuki Yamashiro
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, Japan
| | - Ichiro Takeuchi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| |
Collapse
|
2
|
Moretti M, Hountondji M, Ge R, Emwas AH, Bilalis P, Susapto HH, Alrashoudi A, Liu X, Briola GR, Hauser CAE. Selectively Positioned Catechol Moiety Supports Ultrashort Self-Assembling Peptide Hydrogel Adhesion for Coral Restoration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17903-17920. [PMID: 38039288 DOI: 10.1021/acs.langmuir.3c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Coral reef survival is threatened globally. One way to restore this delicate ecosystem is to enhance coral growth by the controlled propagation of coral fragments. To be sustainable, this technique requires the use of biocompatible underwater adhesives. Hydrogels based on rationally designed ultrashort self-assembling peptides (USP) are of great interest for various biological and environmental applications, due to their biocompatibility and tunable mechanical properties. Implementing superior adhesion properties to the USP hydrogel compounds is crucial in both water and high ionic strength solutions and is relevant in medical and marine environmental applications such as coral regeneration. Some marine animals secrete large quantities of the aminoacids dopa and lysine to enhance their adhesion to wet surfaces. Therefore, the addition of catechol moieties to the USP sequence containing lysine (IIZK) should improve the adhesive properties of USP hydrogels. However, it is challenging to place the catechol moiety (Do) within the USP sequence at an optimal position without compromising the hydrogel self-assembly process and mechanical properties. Here, we demonstrate that, among three USP hydrogels, DoIIZK is the least adhesive and that the adhesiveness of the IIZDoK hydrogel is compromised by its poor mechanical properties. The best adhesion outcome was achieved using the IIZKDo hydrogel, the only one to show equally sound adhesive and mechanical properties. A mechanistic understanding of this outcome is presented here. This property was confirmed by the successful gluing of coral fragments by means of IIZKDo hydrogel that are still thriving after more than three years since the deployment. The validated biocompatibility of this underwater hydrogel glue suggests that it could be advantageously implemented for other applications, such as surgical interventions.
Collapse
Affiliation(s)
- Manola Moretti
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology, Thuwal 23955, Jeddah, Saudi Arabia
| | - Maria Hountondji
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology, Thuwal 23955, Jeddah, Saudi Arabia
| | - Rui Ge
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology, Thuwal 23955, Jeddah, Saudi Arabia
| | - Abdul-Hamid Emwas
- KAUST Core Laboratories, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Panayiotis Bilalis
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology, Thuwal 23955, Jeddah, Saudi Arabia
| | - Hepi H Susapto
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology, Thuwal 23955, Jeddah, Saudi Arabia
| | - Abdulelah Alrashoudi
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology, Thuwal 23955, Jeddah, Saudi Arabia
| | - Xinzhi Liu
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology, Thuwal 23955, Jeddah, Saudi Arabia
| | - Giuseppina R Briola
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology, Thuwal 23955, Jeddah, Saudi Arabia
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology, Thuwal 23955, Jeddah, Saudi Arabia
- Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Takeuchi I, Takaichi D, Katsumata M, Ishibashi H. Succession of delayed fluorescence correlated with coral bleaching in the hermatypic coral Acropora tenuis. MARINE POLLUTION BULLETIN 2020; 154:111008. [PMID: 32179506 DOI: 10.1016/j.marpolbul.2020.111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
We investigated coral bleaching by monitoring colour changes and measuring the delayed fluorescence (DF) of symbiotic dinoflagellates in the hermatypic coral Acropora tenuis, exposed to 1.0 μg/L Irgarol 1051 (photosystem II herbicide) for 14 d. The Irgarol concentration corresponded to those from international port regions of the world. The coral colour and DFs under the control treatment were stable throughout the experiment, whereas under the Irgarol treatment the corals showed gradual bleaching. The Irgarol treatment caused a rapid decrease in the slow decay DF component (10.1-60.0 s), while the fast decay DF component (0.1-10.0 s) decreased significantly after 6 d. The significant correlation between the latter values and the coral colour indicates that if the electron accumulation function of quinones QA and QB is compromised, corals will bleach. The present study will contribute to the understanding of the mechanism involved in bleaching of coral exposed to herbicides.
Collapse
Affiliation(s)
- Ichiro Takeuchi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| | - Daisuke Takaichi
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Masakazu Katsumata
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita, Hamamatsu, Shizuoka 434-8601, Japan
| | - Hiroshi Ishibashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| |
Collapse
|