Rajendran B, Chen X, Li Z, Zhan Z, Goh KB. How molecular interactions tune the characteristic time of nanocomposite colloidal sensors.
J Colloid Interface Sci 2022;
616:668-678. [PMID:
35245793 DOI:
10.1016/j.jcis.2022.02.100]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
HYPOTHESIS
Mass transport critically controls the performance of colloidal metal-polymer sensors. We hypothesize that molecular-level pair interactions, such as electric, steric, and specific binding effects, govern the mass transport and, in return, the characteristic time of these sensors.
THEORY
Here we present a simple theory guided by experimental data to examine the sensing performance of two usually encountered archetypal metal-polymer sensors, namely (1) core-shell and (2) yolk-shell architectures. For this purpose, we use the static reactive density functional theory framework, determining how (i) charge, (ii) size, and (iii) non-covalent binding factors modulate the characteristic time.
FINDINGS
We show how an interplay between diffusivity and partitioning governs the sensing time of the sensors, where an anti-correlation cancellation between them renders the time non-trivial. Our study demonstrates that the convoluted substrate-hydrogel shell interaction controls the characteristic time of these colloidal sensors, especially when the sensors are in a collapsed state. Notably, the substrates with a high dipole moment tend to equilibrate greatly, but undesirably, at the shell-solution interface. With this, we encourage the formation of a metastable sorption state.
Collapse