1
|
Marnis H, Syahputra K, Iswanto B, Cartealy IC, Sularto, Darmawan J, Hayuningtyas EP, Hidayat R, Tirta Subangkit A, Arianto. The complete mitochondrial genome of the blackskin catfish ( Clarias meladerma: Clariidae) from Rokan River, Riau, Indonesia. Mitochondrial DNA B Resour 2024; 9:1093-1097. [PMID: 39165382 PMCID: PMC11334743 DOI: 10.1080/23802359.2024.2392742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/10/2024] [Indexed: 08/22/2024] Open
Abstract
Clarias meladerma Bleeker, 1846, a native catfish species in Indonesia belonging to the family Clariidae. The present study the complete mitochondrial genome sequence of C. meladerma from the Rokan River was sequenced by using next-generation sequencing, and its phylogenetic relationship was analyzed. The mitochondrial genome comprises 13 protein-coding genes (PCGs), 22 tRNA genes, and two rRNA genes, with a total length of 16,808 bp. The mitogenome of C. meladerma exhibits a base composition of 32.49% adenine, 25.75% thymine, 14.51% guanine, and 27.25% cytosine. Phylogenetic analysis indicated that C. meladerma has the same clade with C. macrocephalus, C. batrachus, and C. fucus. In essence, the findings of this study lay down a genetic foundation for future investigations into C. meladerma.
Collapse
Affiliation(s)
- Huria Marnis
- Research Center for Fishery, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Khairul Syahputra
- Research Center for Fishery, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Bambang Iswanto
- Research Center for Fishery, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Imam Civi Cartealy
- Research Center for Computation, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Sularto
- Research Center for Fishery, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Jadmiko Darmawan
- Research Center for Fishery, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | | | - Rahmat Hidayat
- Research Center for Fishery, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Arsad Tirta Subangkit
- Research Center for Fishery, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Arianto
- Research Center for Fishery, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| |
Collapse
|
2
|
Kundu S, De Alwis PS, Binarao JD, Lee SR, Kim AR, Gietbong FZ, Yi M, Kim HW. Mitochondrial DNA Corroborates the Genetic Variability of Clarias Catfishes (Siluriformes, Clariidae) from Cameroon. Life (Basel) 2023; 13:life13051068. [PMID: 37240713 DOI: 10.3390/life13051068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The airbreathing walking catfish (Clariidae: Clarias) comprises 32 species that are endemic to African freshwater systems. The species-level identification of this group is challenging due to their complex taxonomy and polymorphism. Prior to this study, the biological and ecological studies were restricted to a single species, Clarias gariepinus, resulting in a biased view of their genetic diversity in African waters. Here, we generated the 63-mitochondrial Cytochrome c oxidase subunit 1 (COI) gene sequences of Clarias camerunensis and Clarias gariepinus from the Nyong River in Cameroon. Both C. camerunensis and C. gariepinus species maintained adequate intra-species (2.7% and 2.31%) and inter-species (6.9% to 16.8% and 11.4% to 15.1%) genetic distances with other Clarias congeners distributed in African and Asian/Southeast Asian drainages. The mtCOI sequences revealed 13 and 20 unique haplotypes of C. camerunensis and C. gariepinus, respectively. The TCS networks revealed distinct haplotypes of C. camerunensis and shared haplotypes of C. gariepinus in African waters. The multiple species delimitation approaches (ABGD and PTP) revealed a total of 20 and 22 molecular operational taxonomic units (MOTUs), respectively. Among the two Clarias species examined, we found more than one MOTU in C. camerunensis, which is consistent with population structure and tree topology results. The phylogeny generated through Bayesian Inference analysis clearly separated C. camerunensis and C. gariepinus from other Clarias species with high posterior probability supports. The present study elucidates the occurrence of possible cryptic diversity and allopatric speciation of C. camerunensis in African drainages. Further, the present study confirms the reduced genetic diversity of C. gariepinus across its native and introduced range, which might have been induced by unscientific aquaculture practices. The study recommends a similar approach to the same and related species from different river basins to illuminate the true diversity of Clarias species in Africa and other countries.
Collapse
Affiliation(s)
- Shantanu Kundu
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
| | - Piyumi S De Alwis
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
| | - Jerome D Binarao
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
| | - Soo-Rin Lee
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Ah Ran Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | | | - Myunggi Yi
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
3
|
Mitochondriomics of Clarias Fishes (Siluriformes: Clariidae) with a New Assembly of Clarias camerunensis: Insights into the Genetic Characterization and Diversification. Life (Basel) 2023; 13:life13020482. [PMID: 36836839 PMCID: PMC9960581 DOI: 10.3390/life13020482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The mitogenome of an endemic catfish Clarias camerunensis was determined from the Cameroon water. This circular mitogenome was 16,511 bp in length and comprised 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a single AT-rich control region. The heavy strand accommodates 28 genes, whereas the light strand is constituted by ND6 and eight transfer RNA (tRNA) genes. The C. camerunensis mitochondrial genome is AT biased (56.89%), as showcased in other Clarias species. The comparative analyses revealed that most of the Clarias species have 6 overlapping and 11 intergenic spacer regions. Most of the PCGs were initiated and terminated with the ATG start codon and TAA stop codon, respectively. The tRNAs of C. camerunensis folded into the distinctive cloverleaf secondary structure, except trnS1. The placement of the conserved domains in the control region was similar in all the Clarias species with highly variable nucleotides in CSB-I. Both maximum likelihood and Bayesian-based matrilineal phylogenies distinctly separated all Clarias species into five clades on the basis of their known distributions (South China, Sundaland, Indochina, India, and Africa). The TimeTree analysis revealed that the two major clades (Indo-Africa and Asia) of Clarias species might have diverged during the Paleogene (≈28.66 MYA). Our findings revealed the separation of Indian species (C. dussumieri) and African species (C. camerunensis and Clarias gariepinus) took place during the Paleogene, as well as the South Chinese species (Clarias fuscus) and Sundaland species (Clarias batrachus) splits from the Indochinese species (Clarias macrocephalus) during the Neogene through independent colonization. This pattern of biotic relationships highlights the influence of topography and geological events in determining the evolutionary history of Clarias species. The enrichment of mitogenomic data and multiple nuclear loci from their native range or type locality will confirm the true diversification of Clarias species in African and Asian countries.
Collapse
|
4
|
Baisvar VS, Kushwaha B, Kumar R, Kumar MS, Singh M, Rai A, Sarkar UK. BAC-FISH Based Physical Map of Endangered Catfish Clarias magur for Chromosome Cataloguing and Gene Isolation through Positional Cloning. Int J Mol Sci 2022; 23:ijms232415958. [PMID: 36555603 PMCID: PMC9781557 DOI: 10.3390/ijms232415958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Construction of a physical chromosome map of a species is important for positional cloning, targeted marker development, fine mapping of genes, selection of candidate genes for molecular breeding, as well as understanding the genome organization. The genomic libraries in the form of bacterial artificial chromosome (BAC) clones are also a very useful resource for physical mapping and identification and isolation of full-length genes and the related cis acting elements. Some BAC-FISH based studies reported in the past were gene based physical chromosome maps of Clarias magur (magur) to understand the genome organization of the species and to establish the relationships with other species in respect to genes' organization and evolution in the past. In the present study, we generated end sequences of the BAC clones and analyzed those end sequences within the scaffolds of the draft genome of magur to identify and map the genes bioinformatically for each clone. A total of 36 clones mostly possessing genes were identified and used in probe construction and their subsequent hybridization on the metaphase chromosomes of magur. This study successfully mapped all 36 specific clones on 16 chromosome pairs, out of 25 pairs of magur chromosomes. These clones are now recognized as chromosome-specific makers, which are an aid in individual chromosome identification and fine assembly of the genome sequence, and will ultimately help in developing anchored genes' map on the chromosomes of C. magur for understanding their organization, inheritance of important fishery traits and evolution of magur with respect to channel catfish, zebrafish and other species.
Collapse
Affiliation(s)
- Vishwamitra Singh Baisvar
- ICAR—National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, India
| | - Basdeo Kushwaha
- ICAR—National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, India
| | - Ravindra Kumar
- ICAR—National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, India
- Correspondence:
| | - Murali Sanjeev Kumar
- ICAR—National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, India
| | - Mahender Singh
- ICAR—National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, India
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR—Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi 110012, India
| | - Uttam Kumar Sarkar
- ICAR—National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, India
| |
Collapse
|
5
|
Wang D, Yang L, Ning C, Liu JF, Zhao X. Breed-specific reference sequence optimized mapping accuracy of NGS analyses for pigs. BMC Genomics 2021; 22:736. [PMID: 34641784 PMCID: PMC8507312 DOI: 10.1186/s12864-021-08030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background Reference sequences play a vital role in next-generation sequencing (NGS), impacting mapping quality during genome analyses. However, reference genomes usually do not represent the full range of genetic diversity of a species as a result of geographical divergence and independent demographic events of different populations. For the mitochondrial genome (mitogenome), which occurs in high copy numbers in cells and is strictly maternally inherited, an optimal reference sequence has the potential to make mitogenome alignment both more accurate and more efficient. In this study, we used three different types of reference sequences for mitogenome mapping, i.e., the commonly used reference sequence (CU-ref), the breed-specific reference sequence (BS-ref) and the sample-specific reference sequence (SS-ref), respectively, and compared the accuracy of mitogenome alignment and SNP calling among them, for the purpose of proposing the optimal reference sequence for mitochondrial DNA (mtDNA) analyses of specific populations Results Four pigs, representing three different breeds, were high-throughput sequenced, subsequently mapping reads to the reference sequences mentioned above, resulting in a largest mapping ratio and a deepest coverage without increased running time when aligning reads to a BS-ref. Next, single nucleotide polymorphism (SNP) calling was carried out by 18 detection strategies with the three tools SAMtools, VarScan and GATK with different parameters, using the bam results mapping to BS-ref. The results showed that all eighteen strategies achieved the same high specificity and sensitivity, which suggested a high accuracy of mitogenome alignment by the BS-ref because of a low requirement for SNP calling tools and parameter choices. Conclusions This study showed that different reference sequences representing different genetic relationships to sample reads influenced mitogenome alignment, with the breed-specific reference sequences being optimal for mitogenome analyses, which provides a refined processing perspective for NGS data. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08030-1.
Collapse
Affiliation(s)
- Dan Wang
- National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Liu Yang
- National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chao Ning
- National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xingbo Zhao
- National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Molecular data show Clinostomoides Dollfus, 1950 is a junior synonym of Clinostomum Leidy, 1856, with redescription of metacercariae of Clinostomum brieni n. comb. Parasitology 2019; 146:805-813. [PMID: 30638172 DOI: 10.1017/s0031182018002172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The genus Clinostomoides Dollfus, 1950 was erected to accommodate a single worm from Ardea goliath sampled in the Belgian Congo. The specimen was distinguished from other clinostomids by its large size and posterior genitalia. In the following years, metacercariae of Clinostomoides brieni, have been described in Clarias spp. in southern and western Africa. A few authors have referred to Clinostomum brieni, but all such usages appear to be lapsus calami, and the validity of Clinostomoides remains widely accepted. In this study our aim was: position C. brieni among the growing clinostomids molecular database, and redescribe the species with emphasis on characters that have emerged as important in recent work. We sequenced two nuclear (partial 18S and ITS) and one mitochondrial marker (partial cytochrome c oxidase I) and studied morphology in metacercariae from hosts and localities likely to harbour the type species (Clarias spp., Democratic Republic of the Congo, South Africa). Phylogenetic analysis shows C. brieni belongs within Clinostomum Leidy, 1856. We therefore transfer C. brieni to Clinostomum, amend the diagnosis for the genus Clinostomum and provide a critical analysis of other species in Clinostomoides, all of which we consider species inquirendae, as they rest on comparisons of different developmental stages.
Collapse
|
7
|
Pavan-Kumar A, Raman S, Koringa PG, Patel N, Shah T, Singh RK, Krishna G, Joshi CG, Gireesh-Babu P, Chaudhari A. Complete mitochondrial genome of threatened mahseer Tor tor (Hamilton 1822) and its phylogenetic relationship within Cyprinidae family. J Genet 2017; 95:853-863. [PMID: 27994184 DOI: 10.1007/s12041-016-0706-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mahseers (Tor, Neolissochilus and Naziritor) are an important group of fishes endemic to Asia with the conservation status of most species evaluated as threatened. Conservation plans to revive these declining wild populations are hindered by unstable taxonomy. Molecular phylogeny studies with mitochondrial genome have been successfully used to reconstruct the phylogenetic tree and to resolve taxonomic ambiguity. In the present study, complete mitochondrial genome of Tor tor has been sequenced using ion torrent next-generation sequencing platform with coverage of more than 1000 x. Comparative mitogenome analysis shows higher divergence value at ND1 gene than COI gene. Further, occurrence of a distinct genetic lineage of T. tor is revealed. The phylogenetic relationship among mahseer group has been defined as Neolissochilus hexagonolepis ((T. sinensis (T. putitora, T. tor), (T. khudree, T. tambroides)).
Collapse
Affiliation(s)
- A Pavan-Kumar
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education (Deemed University) ICAR, Mumbai 400 061, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|