1
|
Kim T, Hearn CJ, Mays J, Velez-Irizarry D, Reddy SM, Spatz SJ, Cheng HH, Dunn JR. Phenotypic Characterization of Recombinant Marek's Disease Virus in Live Birds Validates Polymorphisms Associated with Virulence. Viruses 2023; 15:2263. [PMID: 38005939 PMCID: PMC10674313 DOI: 10.3390/v15112263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Marek's disease (MD) is a highly infectious lymphoproliferative disease in chickens with a significant economic impact. Mardivirus gallidalpha 2, also known as Marek's disease virus (MDV), is the causative pathogen and has been categorized based on its virulence rank into four pathotypes: mild (m), virulent (v), very virulent (vv), and very virulent plus (vv+). A prior comparative genomics study suggested that several single-nucleotide polymorphisms (SNPs) and genes in the MDV genome are associated with virulence, including nonsynonymous (ns) SNPs in eight open reading frames (ORF): UL22, UL36, UL37, UL41, UL43, R-LORF8, R-LORF7, and ICP4. To validate the contribution of these nsSNPs to virulence, the vv+MDV strain 686 genome was modified by replacing nucleotides with those observed in the vMDV strains. Pathogenicity studies indicated that these substitutions reduced the MD incidence and increased the survival of challenged birds. Furthermore, using the best-fit pathotyping method to rank the virulence, the modified vv+MDV 686 viruses resulted in a pathotype similar to the vvMDV Md5 strain. Thus, these results support our hypothesis that SNPs in one or more of these ORFs are associated with virulence but, as a group, are not sufficient to result in a vMDV pathotype, suggesting that there are additional variants in the MDV genome associated with virulence, which is not surprising given this complex phenotype and our previous finding of additional variants and SNPs associated with virulence.
Collapse
Affiliation(s)
- Taejoong Kim
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA; (S.J.S.); (J.R.D.)
| | - Cari J. Hearn
- Avian Diseases and Oncology Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 4279 E. Mount Hope Road, East Lansing, MI 48823, USA; (C.J.H.); (J.M.); (D.V.-I.); (H.H.C.)
| | - Jody Mays
- Avian Diseases and Oncology Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 4279 E. Mount Hope Road, East Lansing, MI 48823, USA; (C.J.H.); (J.M.); (D.V.-I.); (H.H.C.)
| | - Deborah Velez-Irizarry
- Avian Diseases and Oncology Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 4279 E. Mount Hope Road, East Lansing, MI 48823, USA; (C.J.H.); (J.M.); (D.V.-I.); (H.H.C.)
| | - Sanjay M. Reddy
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA;
| | - Stephen J. Spatz
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA; (S.J.S.); (J.R.D.)
| | - Hans H. Cheng
- Avian Diseases and Oncology Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 4279 E. Mount Hope Road, East Lansing, MI 48823, USA; (C.J.H.); (J.M.); (D.V.-I.); (H.H.C.)
| | - John R. Dunn
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA; (S.J.S.); (J.R.D.)
| |
Collapse
|
2
|
Vychodil T, Wight DJ, Nascimento M, Jolmes F, Korte T, Herrmann A, Kaufer BB. Visualization of Marek’s Disease Virus Genomes in Living Cells during Lytic Replication and Latency. Viruses 2022; 14:v14020287. [PMID: 35215880 PMCID: PMC8877148 DOI: 10.3390/v14020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
Visualization of the herpesvirus genomes during lytic replication and latency is mainly achieved by fluorescence in situ hybridization (FISH). Unfortunately, this technique cannot be used for the real-time detection of viral genome in living cells. To facilitate the visualization of the Marek’s disease virus (MDV) genome during all stages of the virus lifecycle, we took advantage of the well-established tetracycline operator/repressor (TetO/TetR) system. This system consists of a fluorescently labeled TetR (TetR-GFP) that specifically binds to an array of tetO sequences. This tetO repeat array was first inserted into the MDV genome (vTetO). Subsequently, we fused TetR-GFP via a P2a self-cleaving peptide to the C-terminus of the viral interleukin 8 (vIL8), which is expressed during lytic replication and latency. Upon reconstitution of this vTetO-TetR virus, fluorescently labeled replication compartments were detected in the nucleus during lytic replication. After validating the specificity of the observed signal, we used the system to visualize the genesis and mobility of the viral replication compartments. In addition, we assessed the infection of nuclei in syncytia as well as lytic replication and latency in T cells. Taken together, we established a system allowing us to track the MDV genome in living cells that can be applied to many other DNA viruses.
Collapse
Affiliation(s)
- Tereza Vychodil
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (T.V.); (D.J.W.); (M.N.)
| | - Darren J. Wight
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (T.V.); (D.J.W.); (M.N.)
| | - Mariana Nascimento
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (T.V.); (D.J.W.); (M.N.)
| | - Fabian Jolmes
- Department of Biology, Molecular Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany; (F.J.); (T.K.); (A.H.)
| | - Thomas Korte
- Department of Biology, Molecular Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany; (F.J.); (T.K.); (A.H.)
| | - Andreas Herrmann
- Department of Biology, Molecular Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany; (F.J.); (T.K.); (A.H.)
- Institut für Chemie und Biochemie, Freie Universität Berlin, Altensteinstr. 23a, 14195 Berlin, Germany
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (T.V.); (D.J.W.); (M.N.)
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
- Correspondence: ; Tel.: +49-30-838-51936
| |
Collapse
|
3
|
Nishitha Y, Priyanka E, Vamshi Krishna S, Kannaki TR. Co-infection of Marek's disease virus with different oncogenic immunosuppressive viruses in chicken flocks. Virusdisease 2021; 32:804-809. [PMID: 34901327 DOI: 10.1007/s13337-021-00731-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022] Open
Abstract
Oncogenic tumour diseases are major threat to poultry industry. Marek's disease (MD), avian leukosis (ALV) and reticulosendotheliosis virus (REV) are the major tumour causing immunosuppressive viral diseases of chicken. A total of 120 tissue samples presented with tumour lesions from different chicken flocks of coloured broiler, layer breeders and native chicken breeds were screened for MDV, ALV and REV by histopathology and virus specific PCRs individually. Presence of oncogenic viruses in the samples were screened by virus specific PCR. A total of 47 samples were detected either with single infection or dual infection with these viruses. Out of 47, 17 were detected with either one of the viruses and remaining 30 with any of the two viruses. REV was the major cause of tumour in the present samples followed by MDV. ALV was not detected alone, it was either with MD or REV. All 5 ALV positive samples were detected with ALV-E subtype. REV was detected predominantly (22 out of 25 positives) as single infection rather than co-infection.
Collapse
Affiliation(s)
- Y Nishitha
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana 500030 India.,Department of Veterinary Microbiology, P. V. Narasimha Rao Telangana Veterinary University, Hyderabad, Telangana 500030 India
| | - E Priyanka
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana 500030 India
| | - S Vamshi Krishna
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana 500030 India.,Department of Veterinary Microbiology, P. V. Narasimha Rao Telangana Veterinary University, Hyderabad, Telangana 500030 India
| | - T R Kannaki
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana 500030 India.,Department of Veterinary Microbiology, P. V. Narasimha Rao Telangana Veterinary University, Hyderabad, Telangana 500030 India
| |
Collapse
|
4
|
Senevirathne A, Hewawaduge C, Lee JH. Genetic interference exerted by Salmonella-delivered CRISPR/Cas9 significantly reduces the pathological burden caused by Marek's disease virus in chickens. Vet Res 2021; 52:125. [PMID: 34593043 PMCID: PMC8482593 DOI: 10.1186/s13567-021-00995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Abstract
Efficient in vivo delivery of a CRISPR/Cas9 plasmid is of paramount importance for effective therapy. Here, we investigated the usability of Salmonella as a plasmid carrier for in vivo therapy against virus-induced cancer using Marek’s disease virus (MDV) as a model for study in chickens. A green fluorescent protein-expressing CRISPR/Cas9 plasmid encoding the virulence gene pp38 was constructed against Marek’s disease virus. Therapeutic plasmids were transformed into Salmonella carrying lon and sifA gene deletions. The animals in 5 groups were intraperitoneally inoculated with phosphate-buffered saline, vector control, or Salmonella before or after MDV infection, or left uninfected as a naïve control. Therapeutic effectiveness was evaluated by observing disease outcomes and the viral copy number in peripheral blood mononuclear cells. The efficacy of plasmid delivery by Salmonella was 13 ± 1.7% in the spleen and 8.0 ± 1.8% in the liver on the 6th day post-infection. The Salmonella-treated groups showed significant resistance to MDV infection. The maximum effect was observed in the group treated with Salmonella before MDV infection. None of the chickens fully recovered; however, the results suggested that timely delivery of Salmonella could be effective for in vivo CRISPR/Cas9-mediated genetic interference against highly pathogenic MDV. The use of Salmonella in CRISPR systems provides a simpler and more efficient platform for in vivo therapy with CRISPR than the use of conventional in vivo gene delivery methods and warrants further development.
Collapse
Affiliation(s)
- Amal Senevirathne
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea.
| |
Collapse
|
5
|
Kannaki TR, Priyanka E, Nishitha Y, Krishna SV, Haunshi S, Subbiah M. Molecular detection and phylogenetic analysis of Marek's disease virus virulence-associated genes from vaccinated flocks in southern India reveals circulation of virulent MDV genotype. Transbound Emerg Dis 2021; 69:e244-e253. [PMID: 34403565 DOI: 10.1111/tbed.14289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 11/30/2022]
Abstract
Marek's disease (MD) is a re-emerging viral disease of chickens and a serious economic threat to the poultry industry worldwide. Continuous surveillance with molecular investigation is essential to monitor the emergence of virulent Marek's disease virus (MDV) strains and to devise any appropriate vaccination strategy and implement bio-security programmes. In the present study, we investigated the cases of MD outbreaks in vaccinated poultry flocks. The MD outbreak was confirmed through necropsy (mainly visceral tumours), histopathology and viral gene specific PCR. The pathotypes of the field MDV strains were assessed by molecular analysis of three virulence-associated genes, meq, pp38 and vIL-8. The Meq sequence of the field strains analyzed in this study lacked the 59 aa unique to mild strains, indicating that they are potentially virulent strains. Mutation at position 71 and the presence of five proline rich repeats in the transactivation domain, both associated with virulence were observed in these strains; however, the signature sequences specific to very virulent plus strains were absent. Phylogenetic analysis of meq oncogene sequences revealed clustering of the field strains with North Indian strains and with a very virulent plus ATE 2539 strain from Hungary. Analyses of pp38 protein at positions 107 and 109 and vIL-8 protein at positions 4 and 31 showed signatures of virulence. Sequence and phylogenetic analysis of oncogene and virulence-associated genes of field MDVs from vaccinated flock indicated that these strains possessed molecular features of virulent strains.
Collapse
Affiliation(s)
- T R Kannaki
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| | - E Priyanka
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| | - Y Nishitha
- Department of Veterinary Microbiology, P. V. Narasimha Rao Telangana Veterinary University, Hyderabad, Telangana, India
| | - S Vamshi Krishna
- Department of Veterinary Microbiology, P. V. Narasimha Rao Telangana Veterinary University, Hyderabad, Telangana, India
| | - Santosh Haunshi
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| | - Madhuri Subbiah
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Deng Q, Shi M, Li Q, Wang P, Li M, Wang W, Gao Y, Li H, Lin L, Huang T, Wei P. Analysis of the evolution and transmission dynamics of the field MDV in China during the years 1995-2020, indicating the emergence of a unique cluster with the molecular characteristics of vv+ MDV that has become endemic in southern China. Transbound Emerg Dis 2020; 68:3574-3587. [PMID: 33354907 DOI: 10.1111/tbed.13965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 01/23/2023]
Abstract
Marek's disease (MD) continues to threaten the sustainability of the world poultry industry. In this study, the sequences of the meq gene of 220 MDV strains isolated during the years 1964-2020 were analysed, including 50 from our group plus 170 isolates from the GenBank. Analyses, using phylogenetic trees, amino acid (aa)-mutation screening, evolutionary studies and transmission dynamics were all performed. All strains were divided into two clusters (Clusters 1 and 2), and Cluster 1 includes the mild strains, the vaccine strains and the foreign virulent strains, while Cluster 2 was dominated by the Chinese field strains. Our study identified that the Chinese field strains in Cluster 2 during the years 1995-2020 likely originated in the 1980s from abroad, and the estimated genetic diversity of these strains experienced two growth phases in the years 2005-2007.5 and 2015-2017. Viral phylogeography identified 3 major geographic provincial regions for the Chinese field strains of Cluster 2: the Northeastern Region (Jilin, Liaoning and Heilongjiang), the East-central Region (Henan, Shandong and Jiangsu) and the Southern Region (Guangxi, Guangdong and Yunnan). The spread of Northeastern strains to East-central chicken flocks and the further spread from Guangxi to Guangdong are strongly indicated. The emergence of the mutations A88T and Q93R together in the Southern strains during the years 2017-2020 with molecular characteristics of vv+ MDV were also found later than those in the Northern strains. Overall, the Chinese field strains in Cluster 2 in southern China in recent years have been rapidly evolving. Guangxi Province has become an epicentre for these viruses and the chicken flocks in the Southern region have been facing the adverse effects of the emerging vv+ MDV.
Collapse
Affiliation(s)
- Qiaomu Deng
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Mengya Shi
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Qiuhong Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Peikun Wang
- Institute of Microbe and Host Health, Linyi University, Linyi, China
| | - Min Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Weiwei Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Yanli Gao
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Haijuan Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Lulu Lin
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Teng Huang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| |
Collapse
|
7
|
Kannaki TR, Gowthaman V. Marek’s disease: time to review the emerging threat in Indian poultry. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1729674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- T. R. Kannaki
- ICAR-Directorate of Poultry Research, Hyderabad, India
| | - Vasudevan Gowthaman
- Poultry Disease Diagnosis and Surveillance Laboratory, Veterinary College and Research Institute Campus, Namakkal, India
| |
Collapse
|
8
|
Mescolini G, Lupini C, Davidson I, Massi P, Tosi G, Catelli E. Marek's disease viruses circulating in commercial poultry in Italy in the years 2015-2018 are closely related by their meq gene phylogeny. Transbound Emerg Dis 2019; 67:98-107. [PMID: 31411371 DOI: 10.1111/tbed.13327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/23/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
Marek's disease (MD) is a lymphoproliferative disease important to the poultry industry worldwide; it is caused by Gallid alphaherpesvirus 2 (GaHV-2). The virulence of GaHV-2 isolates has shifted over the years from mild to virulent, very virulent and very virulent +. Nowadays the disease is controlled by vaccination, but field strains of increased virulence are emerging worldwide. Economic losses due to MD are mostly associated with its acute form, characterized by visceral lymphomas. The present study aimed to molecularly classify a group of 13 GaHV-2 strains detected in vaccinated Italian commercial chicken flocks during acute MD outbreaks, and to scrutinize the ability of predicting GaHV-2 virulence, according to the meq gene sequence. The full-length meq genes were amplified, and the obtained amino acid (aa) sequences were analysed, focusing mainly on the number of stretches of four proline molecules (PPPP) within the transactivation domain. Phylogenetic analysis was carried out with the Maximum Likelihood method using the obtained aa sequences, and the sequences of Italian strains detected in backyard flocks and of selected strains retrieved from GenBank. All the analysed strains showed 100% sequence identity in the meq gene, which encodes a Meq protein of 339 aa. The Meq protein includes four PPPP motifs in the transactivation domain and an interruption of a PPPP motif due to a proline-to-serine substitution at position 218. These features are typically encountered in highly virulent isolates. Phylogenetic analysis revealed that the analysed strains belonged to a cluster that includes high-virulence GaHV-2 strains detected in Italian backyard flocks and a hypervirulent Polish strain. Our results support the hypothesis that the virulence of field isolates can be suggested by meq aa sequence analysis.
Collapse
Affiliation(s)
- Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Irit Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Paola Massi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Sezione Diagnostica di Forlì, Forlì, Italy
| | - Giovanni Tosi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Sezione Diagnostica di Forlì, Forlì, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| |
Collapse
|
9
|
Puro KU, Bhattacharjee U, Baruah S, Sen A, Das S, Ghatak S, Doley S, Sanjukta R, Shakuntala I. Characterization of Marek's disease virus and phylogenetic analyses of meq gene from an outbreak in poultry in Meghalaya of Northeast India. Virusdisease 2018; 29:167-172. [PMID: 29911149 DOI: 10.1007/s13337-018-0448-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/26/2018] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to characterize the virus from the lesions and histopathology of organs associated with mortality in Kuroiler (dual purpose variety of poultry developed and marketed by Keggfarms Pvt. Ltd, India) birds suspected of Marek's disease. Among 1047 birds from two farms of different location with 5.5 and 34% mortality, two types of lesion were observed in post mortem examination; tumors in vital organs-liver, spleen, kidney, lung and ovaries and generalized small nodular tumour in the abdominal cavity. Molecular characterization based on detection of ICP4 gene showed the presence of Marek's disease virus (MDV) from tissues and cell culture adapted isolates in Madin Darby Canine Kidney cell lines. Histopathological examination revealed multinucleated immature lymphoid cells infiltration in the organs. Phylogenetic analysis of the isolates based on meq gene showed the isolates belongs to cluster I genotype of MDV. This is for the first time the MDV virus is characterized from an outbreak in the poultry flock in farmer's field affecting production in Meghalaya state of North east India.
Collapse
Affiliation(s)
- Kekungu-U Puro
- 1Animal Health Division, ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya 793103 India
| | - Uttaran Bhattacharjee
- 1Animal Health Division, ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya 793103 India
| | - Samprity Baruah
- 1Animal Health Division, ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya 793103 India
| | - Arnab Sen
- 1Animal Health Division, ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya 793103 India
| | - Samir Das
- 1Animal Health Division, ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya 793103 India
| | - Sandeep Ghatak
- 1Animal Health Division, ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya 793103 India
| | - Sunil Doley
- 2Poultry Section, Livestock Production Division, ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya 793103 India
| | - Rajkumari Sanjukta
- 1Animal Health Division, ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya 793103 India
| | - Ingudam Shakuntala
- 1Animal Health Division, ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya 793103 India
| |
Collapse
|