1
|
Alvarenga M, D'Elia AKP, Rocha G, Arantes CA, Henning F, de Vasconcelos ATR, Solé-Cava AM. Mitochondrial genome structure and composition in 70 fishes: a key resource for fisheries management in the South Atlantic. BMC Genomics 2024; 25:215. [PMID: 38413941 PMCID: PMC10898094 DOI: 10.1186/s12864-024-10035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/21/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Phylogenetic gaps of public databases of reference sequences are a major obstacle for comparative genomics and management of marine resources, particularly in the Global South, where economically important fisheries and conservation flagship species often lack closely-related references. We applied target-enrichment to obtain complete mitochondrial genomes of marine ichthyofauna from the Brazilian coast selected based on economic significance, conservation status and lack of phylogenetically-close references. These included sardines (Dorosomatidae, Alosidae), mackerels (Scombridae) croakers (Sciaenidae), groupers (Epinephelidae) and snappers (Lutjanidae). RESULTS Custom baits were designed to enrich mitochondrial DNA across a broad phylogenetic range of fishes. Sequencing generated approximately 100k reads per sample, which were assembled in a total of 70 complete mitochondrial genomes and include fifty-two new additions to GenBank, including five species with no previous mitochondrial data. Departures from the typical gene content and order occurred in only three taxa and mostly involved tRNA gene duplications. Start-codons for all genes, except Cytochrome C Oxidase subunit I (COI), were consistently ATG, whilst a wide range of stop-codons deviated from the prevailing TAA. Phylogenetic analysis confirmed assembly accuracy and revealed signs of cryptic diversification within the Mullus genus. Lineage delimitation methods using Sardinella aurita and S. brasiliensis mitochondrial genomes support a single Operational Taxonomic Unit. CONCLUSIONS Target enrichment was highly efficient, providing complete novel mitochondrial genomes with little sequencing effort. These sequences are deposited in public databases to enable subsequent studies in population genetics and adaptation of Latin American fish species and serve as a vital resource for conservation and management programs that rely on molecular data for species and genus-level identification.
Collapse
Affiliation(s)
- Marcela Alvarenga
- CENIMP, Centro Nacional para a Identificação Molecular do Pescado, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brasil
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Ananda Krishna Pereira D'Elia
- CENIMP, Centro Nacional para a Identificação Molecular do Pescado, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brasil
| | - Graciane Rocha
- CENIMP, Centro Nacional para a Identificação Molecular do Pescado, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brasil
| | - Clara Alvarez Arantes
- CENIMP, Centro Nacional para a Identificação Molecular do Pescado, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brasil
| | - Frederico Henning
- CENIMP, Centro Nacional para a Identificação Molecular do Pescado, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brasil.
| | | | - Antonio Mateo Solé-Cava
- CENIMP, Centro Nacional para a Identificação Molecular do Pescado, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brasil
| |
Collapse
|
2
|
Capretz Batista Da Silva JP, Shimada K, Datovo A. The importance of the appendicular skeleton for the phylogenetic reconstruction of lamniform sharks (Chondrichthyes: Elasmobranchii). J Morphol 2023; 284:e21585. [PMID: 37059594 DOI: 10.1002/jmor.21585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Abstract
Lamniform sharks are one of the more conspicuous groups of elasmobranchs, including several emblematic taxa as the white shark. Although their monophyly is well supported, the interrelationships of taxa within Lamniformes remains controversial because of the conflict among various previous molecular-based and morphology-based phylogenetic hypotheses. In this study, we use 31 characters related to the appendicular skeleton of lamniforms and demonstrate their ability to resolve the systematic interrelationships within this shark order. In particular, the new additional skeletal characters resolve all polytomies that were present in previous morphology-based phylogenetic analyses of lamniforms. Our study demonstrates the strength of incorporating new morphological data for phylogenetic reconstructions.
Collapse
Affiliation(s)
- João Paulo Capretz Batista Da Silva
- Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Castelo Branco, João Pessoa, Paraíba, Brazil
| | - Kenshu Shimada
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
- Department of Environmental Science and Studies DePaul University, Chicago, Illinois, USA
- Sternberg Museum of Natural History, Fort Hays State University, Hays, Kansas, USA
| | - Aléssio Datovo
- Museu de Zoologia da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
da Silva JPCB, Vaz DFB. Morphology and phylogenetic significance of the pelvic articular region in elasmobranchs (Chondrichthyes). Cladistics 2023; 39:155-197. [PMID: 36856203 DOI: 10.1111/cla.12528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 03/02/2023] Open
Abstract
The morphology of paired fins is commonly overlooked in morphological studies, particularly the pelvic girdle and fins. Consequently, previous phylogenetic studies incorporating morphological data used few skeletal characters from this complex. In this paper, the phylogenetic significance of pelvic articular characters for elasmobranchs is discussed in light of the morphological variation observed in 130 species, the most comprehensive study exploring the morphology of the pelvic girdle done so far. The 10 morphological characters proposed herein for the pelvic articulation were incorporated into a molecular matrix of NADH2 sequences and submitted to an analysis of maximum parsimony employing extended implied weighting. The most stable tree was selected based on the distortion coefficients, SPR distances (subtree pruning and regrafting) and fit values. Some of the striking synapomorphies recovered within elasmobranchs include the presence of an articular surface for the first enlarged pelvic radial supporting Elasmobranchii and the pelvic articular region for the basipterygium extending from the posterolatral margin of the pelvic girdle over its lateral surface in Echinorhinus + Hexanchiformes. Additionally, the proposed characters and their distributions are discussed considering the relationships recovered and also compared with previous morphological and molecular phylogenetic hypotheses.
Collapse
Affiliation(s)
- João Paulo C B da Silva
- Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Castelo Branco, João Pessoa, 58051-900, Brazil
| | - Diego F B Vaz
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02143, USA.,Biorepository Collaboratorium Guam EPSCoR, Marine Laboratory, University of Guam, 303 University Dr, UOG Station, Mangilao, GU, 96923, USA
| |
Collapse
|
4
|
Doane MP, Johnson CJ, Johri S, Kerr EN, Morris MM, Desantiago R, Turnlund AC, Goodman A, Mora M, Lima LFO, Nosal AP, Dinsdale EA. The Epidermal Microbiome Within an Aggregation of Leopard Sharks (Triakis semifasciata) Has Taxonomic Flexibility with Gene Functional Stability Across Three Time-points. MICROBIAL ECOLOGY 2023; 85:747-764. [PMID: 35129649 PMCID: PMC9957878 DOI: 10.1007/s00248-022-01969-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/17/2022] [Indexed: 05/06/2023]
Abstract
The epidermis of Chondrichthyan fishes consists of dermal denticles with production of minimal but protein-rich mucus that collectively, influence the attachment and biofilm development of microbes, facilitating a unique epidermal microbiome. Here, we use metagenomics to provide the taxonomic and functional characterization of the epidermal microbiome of the Triakis semifasciata (leopard shark) at three time-points collected across 4 years to identify links between microbial groups and host metabolism. Our aims include (1) describing the variation of microbiome taxa over time and identifying recurrent microbiome members (present across all time-points); (2) investigating the relationship between the recurrent and flexible taxa (those which are not found consistently across time-points); (3) describing the functional compositions of the microbiome which may suggest links with the host metabolism; and (4) identifying whether metabolic processes are shared across microbial genera or are unique to specific taxa. Microbial members of the microbiome showed high similarity between all individuals (Bray-Curtis similarity index = 82.7, where 0 = no overlap, 100 = total overlap) with the relative abundance of those members varying across sampling time-points, suggesting flexibility of taxa in the microbiome. One hundred and eighty-eight genera were identified as recurrent, including Pseudomonas, Erythrobacter, Alcanivorax, Marinobacter, and Sphingopxis being consistently abundant across time-points, while Limnobacter and Xyella exhibited switching patterns with high relative abundance in 2013, Sphingobium and Sphingomona in 2015, and Altermonas, Leeuwenhoekiella, Gramella, and Maribacter in 2017. Of the 188 genera identified as recurrent, the top 19 relatively abundant genera formed three recurrent groups. The microbiome also displayed high functional similarity between individuals (Bray-Curtis similarity index = 97.6) with gene function composition remaining consistent across all time-points. These results show that while the presence of microbial genera exhibits consistency across time-points, their abundances do fluctuate. Microbial functions however remain stable across time-points; thus, we suggest the leopard shark microbiomes exhibit functional redundancy. We show coexistence of microbes hosted in elasmobranch microbiomes that encode genes involved in utilizing nitrogen, but not fixing nitrogen, degrading urea, and resistant to heavy metal.
Collapse
Affiliation(s)
- Michael P. Doane
- College of Science and Engineering, Flinders University, Bedford Park, South Australia Australia
| | - Colton J. Johnson
- Department of Biology, San Diego State University, San Diego, CA USA
| | - Shaili Johri
- Hopkins Marine Station, Stanford University, Pacific Grove, CA USA
| | - Emma N. Kerr
- College of Science and Engineering, Flinders University, Bedford Park, South Australia Australia
| | | | - Ric Desantiago
- Department of Biology, San Diego State University, San Diego, CA USA
| | - Abigail C. Turnlund
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, QLD Australia
| | - Asha Goodman
- Department of Biology, San Diego State University, San Diego, CA USA
| | - Maria Mora
- Department of Biology, San Diego State University, San Diego, CA USA
| | | | - Andrew P. Nosal
- Department of Environmental and Ocean Sciences, University of San Diego, San Diego, CA USA
- Scripps Institution of Oceanography, University of California – San Diego, CA La Jolla, USA
| | | |
Collapse
|
5
|
Kerr EN, Papudeshi B, Haggerty M, Wild N, Goodman AZ, Lima LFO, Hesse RD, Skye A, Mallawaarachchi V, Johri S, Parker S, Dinsdale EA. Stingray epidermal microbiomes are species-specific with local adaptations. Front Microbiol 2023; 14:1031711. [PMID: 36937279 PMCID: PMC10017458 DOI: 10.3389/fmicb.2023.1031711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Marine host-associated microbiomes are affected by a combination of species-specific (e.g., host ancestry, genotype) and habitat-specific features (e.g., environmental physiochemistry and microbial biogeography). The stingray epidermis provides a gradient of characteristics from high dermal denticles coverage with low mucus to reduce dermal denticles and high levels of mucus. Here we investigate the effects of host phylogeny and habitat by comparing the epidermal microbiomes of Myliobatis californica (bat rays) with a mucus rich epidermis, and Urobatis halleri (round rays) with a mucus reduced epidermis from two locations, Los Angeles and San Diego, California (a 150 km distance). We found that host microbiomes are species-specific and distinct from the water column, however composition of M. californica microbiomes showed more variability between individuals compared to U. halleri. The variability in the microbiome of M. californica caused the microbial taxa to be similar across locations, while U. halleri microbiomes were distinct across locations. Despite taxonomic differences, Shannon diversity is the same across the two locations in U. halleri microbiomes suggesting the taxonomic composition are locally adapted, but diversity is maintained by the host. Myliobatis californica and U. halleri microbiomes maintain functional similarity across Los Angeles and San Diego and each ray showed several unique functional genes. Myliobatis californica has a greater relative abundance of RNA Polymerase III-like genes in the microbiome than U. halleri, suggesting specific adaptations to a heavy mucus environment. Construction of Metagenome Assembled Genomes (MAGs) identified novel microbial species within Rhodobacteraceae, Moraxellaceae, Caulobacteraceae, Alcanivoracaceae and Gammaproteobacteria. All MAGs had a high abundance of active RNA processing genes, heavy metal, and antibiotic resistant genes, suggesting the stingray mucus supports high microbial growth rates, which may drive high levels of competition within the microbiomes increasing the antimicrobial properties of the microbes.
Collapse
Affiliation(s)
- Emma N. Kerr
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- *Correspondence: Emma N. Kerr,
| | - Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Miranda Haggerty
- California Department of Fish and Wildlife, San Diego, CA, United States
| | - Natasha Wild
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Asha Z. Goodman
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Lais F. O. Lima
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Ryan D. Hesse
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Amber Skye
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Vijini Mallawaarachchi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Shaili Johri
- Hopkins Maine Station, Stanford University, Stanford, CA, United States
| | - Sophia Parker
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Elizabeth A. Dinsdale
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- Elizabeth A. Dinsdale,
| |
Collapse
|
6
|
Perry CT, Pratte ZA, Clavere-Graciette A, Ritchie KB, Hueter RE, Newton AL, Fischer GC, Dinsdale EA, Doane MP, Wilkinson KA, Bassos-Hull K, Lyons K, Dove ADM, Hoopes LA, Stewart FJ. Elasmobranch microbiomes: emerging patterns and implications for host health and ecology. Anim Microbiome 2021; 3:61. [PMID: 34526135 PMCID: PMC8444439 DOI: 10.1186/s42523-021-00121-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022] Open
Abstract
Elasmobranchs (sharks, skates and rays) are of broad ecological, economic, and societal value. These globally important fishes are experiencing sharp population declines as a result of human activity in the oceans. Research to understand elasmobranch ecology and conservation is critical and has now begun to explore the role of body-associated microbiomes in shaping elasmobranch health. Here, we review the burgeoning efforts to understand elasmobranch microbiomes, highlighting microbiome variation among gastrointestinal, oral, skin, and blood-associated niches. We identify major bacterial lineages in the microbiome, challenges to the field, key unanswered questions, and avenues for future work. We argue for prioritizing research to determine how microbiomes interact mechanistically with the unique physiology of elasmobranchs, potentially identifying roles in host immunity, disease, nutrition, and waste processing. Understanding elasmobranch–microbiome interactions is critical for predicting how sharks and rays respond to a changing ocean and for managing healthy populations in managed care.
Collapse
Affiliation(s)
- Cameron T Perry
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Zoe A Pratte
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | | | - Kim B Ritchie
- Department of Natural Sciences, University of South Carolina Beaufort, Beaufort, SC, USA
| | - Robert E Hueter
- Sharks and Rays Conservation Research Program, Mote Marine Laboratory, Sarasota, FL, USA.,OCEARCH, Park City, UT, USA
| | - Alisa L Newton
- Disney's Animals, Science and Environment, Orlando, FL, USA
| | - G Christopher Fischer
- OCEARCH, Park City, UT, USA.,Marine Science Research Institute, Jacksonville University, Jacksonville, FL, USA
| | - Elizabeth A Dinsdale
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Michael P Doane
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Krystan A Wilkinson
- Sharks and Rays Conservation Research Program, Mote Marine Laboratory, Sarasota, FL, USA.,Chicago Zoological Society's Sarasota Dolphin Research Program ℅ Mote Marine Laboratory, Sarasota, FL, USA
| | - Kim Bassos-Hull
- Sharks and Rays Conservation Research Program, Mote Marine Laboratory, Sarasota, FL, USA
| | - Kady Lyons
- Research and Conservation Department, Georgia Aquarium, Atlanta, GA, USA
| | - Alistair D M Dove
- Research and Conservation Department, Georgia Aquarium, Atlanta, GA, USA
| | - Lisa A Hoopes
- Research and Conservation Department, Georgia Aquarium, Atlanta, GA, USA
| | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
7
|
Vella N, Vella A. The complete mitogenome of the Critically Endangered smalltooth sand tiger shark, Odontaspis ferox (Lamniformes: Odontaspididae). MITOCHONDRIAL DNA PART B-RESOURCES 2020; 5:3301-3304. [PMID: 33458146 PMCID: PMC7782878 DOI: 10.1080/23802359.2020.1814886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Here, we report the first complete mitochondrial genome for the smalltooth sand tiger shark, Odontaspis ferox (Risso, 1810). The circular mitochondrial genome was found to be 16,682 bp in length and contains 37 genes, a control region and the replication origin of the L-strand (OL). The base composition of this mitogenome is 32.6% A, 23.3% C, 12.8% G, and 31.3% T. Phylogenetic analysis of Lamniformes indicates that O. ferox did not group with Carcharias taurus and so the taxonomic classification of Odontaspididae needs to be revised. This study promotes conservation genetics for this poorly studied shark species which is listed critically endangered in the Mediterranean Sea.
Collapse
Affiliation(s)
- Noel Vella
- Department of Biology, Conservation Biology Research Group, University of Malta, Msida, Malta
| | - Adriana Vella
- Department of Biology, Conservation Biology Research Group, University of Malta, Msida, Malta
| |
Collapse
|
8
|
Jambura PL, Türtscher J, Kindlimann R, Metscher B, Pfaff C, Stumpf S, Weber GW, Kriwet J. Evolutionary trajectories of tooth histology patterns in modern sharks (Chondrichthyes, Elasmobranchii). J Anat 2019; 236:753-771. [PMID: 31867732 PMCID: PMC7163786 DOI: 10.1111/joa.13145] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2019] [Indexed: 11/28/2022] Open
Abstract
During their evolutionary history, modern sharks developed different tooth mineralization patterns that resulted in very distinct histological patterns of the tooth crown (histotypes). To date, three different tooth histotypes have been distinguished: (i) orthodont teeth, which have a central hollow pulp cavity in the crown, encapsulated by a prominent layer of dentine (orthodentine); (ii) pseudoosteodont teeth, which have their pulp cavities secondarily replaced by a dentinal core of porous dentine (osteodentine), encased by orthodentine; and (iii) osteodont teeth, which lack orthodentine and the whole tooth crown of which consists of osteodentine. The aim of the present study was to trace evolutionary trends of tooth mineralization patterns in modern sharks and to find evidence for the presence of phylogenetic or functional signals. High resolution micro‐computed tomography images were generated for the teeth of members of all nine extant shark orders and the putative stem group †Synechodontiformes, represented here by three taxa, to examine the tooth histology non‐destructively. Pseudoosteodonty is the predominant state among modern sharks and represents unambiguously the plesiomorphic condition. Orthodonty evolved several times independently in modern sharks, while the osteodont tooth histotype is only developed in lamniform sharks. The two shark orders Heterodontiformes and Pristiophoriformes showed highly modified tooth histologies, with Pristiophorus exhibiting a histology only known from batomorphs (i.e. rays and skates), and Heterodontus showing a histological difference between anterior and posterior teeth, indicating a link between its tooth morphology, histology and durophagous lifestyle. The tooth histotype concept has proven to be a useful tool to reflect links between histology, function and its taxonomic value for distinct taxa; however, a high degree of variation, especially in the pseudoosteodont tooth histotype, demonstrates that the current histotype concept is too simplistic to fully resolve these relationships. The vascularization pattern of the dentine might offer new future research pathways for better understanding functional and phylogenetic signals in the tooth histology of modern sharks.
Collapse
Affiliation(s)
| | - Julia Türtscher
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - René Kindlimann
- Haimuseum und Sammlung R. Kindlimann, Aathal-Seegräben, Switzerland
| | - Brian Metscher
- Department of Theoretical Biology, University of Vienna, Vienna, Austria
| | - Cathrin Pfaff
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Sebastian Stumpf
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Gerhard W Weber
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.,Core Facility for Micro-Computed Tomography, University of Vienna, Vienna, Austria
| | - Jürgen Kriwet
- Department of Palaeontology, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Taking Advantage of the Genomics Revolution for Monitoring and Conservation of Chondrichthyan Populations. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11040049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chondrichthyes (sharks, rays, skates and chimaeras) are among the oldest extant predators and are vital to top-down regulation of oceanic ecosystems. They are an ecologically diverse group occupying a wide range of habitats and are thus, exploited by coastal, pelagic and deep-water fishing industries. Chondrichthyes are among the most data deficient vertebrate species groups making design and implementation of regulatory and conservation measures challenging. High-throughput sequencing technologies have significantly propelled ecological investigations and understanding of marine and terrestrial species’ populations, but there remains a paucity of NGS based research on chondrichthyan populations. We present a brief review of current methods to access genomic and metagenomic data from Chondrichthyes and discuss applications of these datasets to increase our understanding of chondrichthyan taxonomy, evolution, ecology and population structures. Last, we consider opportunities and challenges offered by genomic studies for conservation and management of chondrichthyan populations.
Collapse
|