1
|
Turk M, Biernaskie J, Mahoney DJ, Jenne CN. Intravital Microscopy Techniques to Image Wound Healing in Mouse Skin. Methods Mol Biol 2022; 2440:165-180. [PMID: 35218539 DOI: 10.1007/978-1-0716-2051-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ability to visualize biological phenomenon has driven scientific interest and advancement over the centuries. Although many methods and assays provide a detailed snapshot of a physiology, the ability to track such processes in real time has expanded the breadth of questions that can be interrogated in the laboratory. Intravital Microscopy (IVM) is a dynamic and powerful way to investigate both the homeostatic and host response to either therapeutic or pathological intervention using live animals. In this technique, animal models, (often mice) are anesthetized, and the organ of interest surgically exteriorized. The animal containing fluorescent labels (either endogenous, or conjugated to antibodies/proteins) will then be placed on a high-powered laser scanning microscope, where the labeled cells or structures can be observed in their natural environment. Complex behavioral data and interactions can be captured in a temporal manner, providing a plethora of information that will help researchers make conclusions on a more systemic level, rather than isolating only part the response. As the technology advances, a greater number of imaging modality options can be utilized, and more diverse research questions can be addressed. The goal of this chapter is to highlight IVM as a technique and help instruct new users on how to choose the proper modalities, and by using imaging of a skin wound in mice as a model, provide troubleshooting strategies, technical advice, and considerations.
Collapse
Affiliation(s)
- Madison Turk
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Douglas J Mahoney
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Calgary, University of Calgary, Calgary, AB, Canada
| | - Craig N Jenne
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
|
3
|
Electron tomography of rabbit cardiomyocyte three-dimensional ultrastructure. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:77-84. [PMID: 27210305 PMCID: PMC4959512 DOI: 10.1016/j.pbiomolbio.2016.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/01/2016] [Indexed: 12/22/2022]
Abstract
The field of cardiovascular research has benefitted from rapid developments in imaging technology over the last few decades. Accordingly, an ever growing number of large, multidimensional data sets have begun to appear, often challenging existing pre-conceptions about structure and function of biological systems. For tissue and cell structure imaging, the move from 2D section-based microscopy to true 3D data collection has been a major driver of new insight. In the sub-cellular domain, electron tomography is a powerful technique for exploration of cellular structures in 3D with unparalleled fidelity at nanometer resolution. Electron tomography is particularly advantageous for studying highly compartmentalised cells such as cardiomyocytes, where elaborate sub-cellular structures play crucial roles in electrophysiology and mechanics. Although the anatomy of specific ultra-structures, such as dyadic couplons, has been extensively explored using 2D electron microscopy of thin sections, we still lack accurate, quantitative knowledge of true individual shape, volume and surface area of sub-cellular domains, as well as their 3D spatial interrelations; let alone of how these are reshaped during the cycle of contraction and relaxation. Here we discuss and illustrate the utility of ET for identification, visualisation, and analysis of 3D cardiomyocyte ultrastructures such as the T-tubular system, sarcoplasmic reticulum, mitochondria and microtubules.
Collapse
|
4
|
Abstract
A quiet revolution is under way in technologies used for nanoscale cellular imaging. Focused ion beams, previously restricted to the materials sciences and semiconductor fields, are rapidly becoming powerful tools for ultrastructural imaging of biological samples. Cell and tissue architecture, as preserved in plastic-embedded resin or in plunge-frozen form, can be investigated in three dimensions by scanning electron microscopy imaging of freshly created surfaces that result from the progressive removal of material using a focused ion beam. The focused ion beam can also be used as a sculpting tool to create specific specimen shapes such as lamellae or needles that can be analyzed further by transmission electron microscopy or by methods that probe chemical composition. Here we provide an in-depth primer to the application of focused ion beams in biology, including a guide to the practical aspects of using the technology, as well as selected examples of its contribution to the generation of new insights into subcellular architecture and mechanisms underlying host-pathogen interactions.
Collapse
|
5
|
Efficient Extraction of Macromolecular Complexes from Electron Tomograms Based on Reduced Representation Templates. COMPUTER ANALYSIS OF IMAGES AND PATTERNS : PROCEEDINGS OF THE ... INTERNATIONAL CONFERENCE ON AUTOMATIC IMAGE PROCESSING. INTERNATIONAL CONFERENCE ON AUTOMATIC IMAGE PROCESSING 2015; 9256:423-431. [PMID: 30058003 DOI: 10.1007/978-3-319-23192-1_35] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electron tomography is the most widely applicable method for obtaining 3D information by electron microscopy. In the field of biology it has been realized that electron tomography is capable of providing a complete, molecular resolution three-dimensional mapping of entire proteoms. However, to realize this goal, information needs to be extracted efficiently from these tomograms. Owing to extremely low signal-to-noise ratios, this task is mostly carried out manually. Standard template matching approaches tend to generate large amounts of false positives. We developed an alternative method for feature extraction in biological electron tomography based on reduced representation templates, approximating the search model by a small number of anchor points used to calculate the scoring function. Using this approach we see a reduction of about 50% false positives with matched-filter approaches to below 5%. At the same time, false negatives stay below 5%, thus essentially matching the performance one would expect from human operators.
Collapse
|
6
|
Do M, Isaacson SA, McDermott G, Le Gros MA, Larabell CA. Imaging and characterizing cells using tomography. Arch Biochem Biophys 2015; 581:111-21. [PMID: 25602704 PMCID: PMC4506273 DOI: 10.1016/j.abb.2015.01.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/29/2014] [Accepted: 01/11/2015] [Indexed: 12/11/2022]
Abstract
We can learn much about cell function by imaging and quantifying sub-cellular structures, especially if this is done non-destructively without altering said structures. Soft X-ray tomography (SXT) is a high-resolution imaging technique for visualizing cells and their interior structure in 3D. A tomogram of the cell, reconstructed from a series of 2D projection images, can be easily segmented and analyzed. SXT has a very high specimen throughput compared to other high-resolution structure imaging modalities; for example, tomographic data for reconstructing an entire eukaryotic cell is acquired in a matter of minutes. SXT visualizes cells without the need for chemical fixation, dehydration, or staining of the specimen. As a result, the SXT reconstructions are close representations of cells in their native state. SXT is applicable to most cell types. The deep penetration of soft X-rays allows cells, even mammalian cells, to be imaged without being sectioned. Image contrast in SXT is generated by the differential attenuation soft X-ray illumination as it passes through the specimen. Accordingly, each voxel in the tomographic reconstruction has a measured linear absorption coefficient (LAC) value. LAC values are quantitative and give rise to each sub-cellular component having a characteristic LAC profile, allowing organelles to be identified and segmented from the milieu of other cell contents. In this chapter, we describe the fundamentals of SXT imaging and how this technique can answer real world questions in the study of the nucleus. We also describe the development of correlative methods for the localization of specific molecules in a SXT reconstruction. The combination of fluorescence and SXT data acquired from the same specimen produces composite 3D images, rich with detailed information on the inner workings of cells.
Collapse
Affiliation(s)
- Myan Do
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, United States; National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Samuel A Isaacson
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, United States
| | - Gerry McDermott
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, United States; National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Mark A Le Gros
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, United States; National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Carolyn A Larabell
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, United States; National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States.
| |
Collapse
|
7
|
Investigation of resins suitable for the preparation of biological sample for 3-D electron microscopy. J Struct Biol 2014; 189:135-46. [PMID: 25433274 DOI: 10.1016/j.jsb.2014.10.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 11/20/2022]
Abstract
In the last two decades, the third-dimension has become a focus of attention in electron microscopy to better understand the interactions within subcellular compartments. Initially, transmission electron tomography (TEM tomography) was introduced to image the cell volume in semi-thin sections (∼ 500 nm). With the introduction of the focused ion beam scanning electron microscope, a new tool, FIB-SEM tomography, became available to image much larger volumes. During TEM tomography and FIB-SEM tomography, the resin section is exposed to a high electron/ion dose such that the stability of the resin embedded biological sample becomes an important issue. The shrinkage of a resin section in each dimension, especially in depth, is a well-known phenomenon. To ensure the dimensional integrity of the final volume of the cell, it is important to assess the properties of the different resins and determine the formulation which has the best stability in the electron/ion beam. Here, eight different resin formulations were examined. The effects of radiation damage were evaluated after different times of TEM irradiation. To get additional information on mass-loss and the physical properties of the resins (stiffness and adhesion), the topography of the irradiated areas was analysed with atomic force microscopy (AFM). Further, the behaviour of the resins was analysed after ion milling of the surface of the sample with different ion currents. In conclusion, two resin formulations, Hard Plus and the mixture of Durcupan/Epon, emerged that were considerably less affected and reasonably stable in the electron/ion beam and thus suitable for the 3-D investigation of biological samples.
Collapse
|
8
|
Liu SR, Wu QP, Zhang JM, Mo SP, Xiao C, Yang XJ. Investigation on the effects of ϵ-poly-L-lysine on a producing strain Streptomyces ahygroscopicus GIM8, for better understanding its biosynthesis. J Basic Microbiol 2014; 55:172-9. [PMID: 25291434 DOI: 10.1002/jobm.201400181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/19/2014] [Indexed: 11/07/2022]
Abstract
ϵ-Poly-L-lysine (ϵ-PL) is an L-lysine homopolymer with strong antimicrobial activity, which is generally produced by Streptomyces strains. ϵ-PL is only produced under acidic conditions in liquid culture, and to improve the current understanding of ϵ-PL biosynthesis, the present study was undertaken to investigate the effects of ϵ-PL on its producer Streptomyces ahygroscopicus GIM8, under acidic and neutral conditions. The results indicated that a neutral pH favored ϵ-PL adsorption onto the cells, whereas minimal adsorption occurred at pH 4.0, the maximum pH for ϵ-PL production. At pH 7.0, small amounts of ϵ-PL caused considerable ATP leakage from the cells, which showed increased membrane permeability. Conversely, ATP leakage was inhibited by ϵ-PL at pH 4.0. Transmission electron microscopy investigation indicated that the cytoplasmic membrane was the primary site of ϵ-PL activity at pH 7.0, and that cell shape was maintained. Metabolic activity profiles revealed that ϵ-PL decreased cellular metabolic activity at a relatively low rate at pH 7.0. However, the toxic effect was significantly enhanced at pH 4.0. Based on these data, a mechanism for the effect of ϵ-PL on ϵ-PL-producing cells under neutral and acidic conditions is proposed. Additionally, acidic conditions may potentially be required for ϵ-PL biosynthesis in liquid culture because low pH can increase membrane permeability and prevent binding of ϵ-PL onto cells, both of which favor the secretion of the ϵ-PL produced by the cells into the broth. This research contributes to the current understanding of ϵ-PL biosynthesis.
Collapse
Affiliation(s)
- Sheng-Rong Liu
- Guangdong Institute of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Ministry-Guangdong Province Jointly State Key Laboratory of Applied Microbiology, Guangzhou, China; Department of Biology, Ningde Normal University, Ningde, China
| | | | | | | | | | | |
Collapse
|
9
|
Cinquin BP, Do M, McDermott G, Walters AD, Myllys M, Smith EA, Cohen-Fix O, Le Gros MA, Larabell CA. Putting molecules in their place. J Cell Biochem 2014; 115:209-16. [PMID: 23966233 DOI: 10.1002/jcb.24658] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 08/14/2013] [Indexed: 12/18/2022]
Abstract
Each class of microscope is limited to imaging specific aspects of cell structure and/or molecular organization. However, imaging the specimen by complementary microscopes and correlating the data can overcome this limitation. Whilst not a new approach, the field of correlative imaging is currently benefitting from the emergence of new microscope techniques. Here we describe the correlation of cryogenic fluorescence tomography (CFT) with soft X-ray tomography (SXT). This amalgamation of techniques integrates 3D molecular localization data (CFT) with a high-resolution, 3D cell reconstruction of the cell (SXT). Cells are imaged in both modalities in a near-native, cryopreserved state. Here we describe the current state of the art in correlative CFT-SXT, and discuss the future outlook for this method.
Collapse
Affiliation(s)
- Bertrand P Cinquin
- Department of Anatomy, University of California San Francisco, San Francisco, California
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Angelini MM, Neuman BW, Buchmeier MJ. Untangling membrane rearrangement in the nidovirales. DNA Cell Biol 2014; 33:122-7. [PMID: 24410069 DOI: 10.1089/dna.2013.2304] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
All known positive sense single-stranded RNA viruses induce host cell membrane rearrangement for purposes of aiding viral genome replication and transcription. Members of the Nidovirales order are no exception, inducing intricate regions of double membrane vesicles and convoluted membranes crucial for the production of viral progeny. Although these structures have been well studied for some members of this order, much remains unclear regarding the biogenesis of these rearranged membranes. Here, we discuss what is known about these structures and their formation, compare some of the driving viral proteins behind this process across the nidovirus order, and examine possible routes of mechanism by which membrane rearrangement may occur.
Collapse
Affiliation(s)
- Megan Mary Angelini
- 1 Department of Molecular Biology and Biochemistry, University of California , Irvine, Irvine, California
| | | | | |
Collapse
|
11
|
Abstract
The perspective of the cytoskeleton as a feature unique to eukaryotic organisms was overturned when homologs of the eukaryotic cytoskeletal elements were identified in prokaryotes and implicated in major cell functions, including growth, morphogenesis, cell division, DNA partitioning, and cell motility. FtsZ and MreB were the first identified homologs of tubulin and actin, respectively, followed by the discovery of crescentin as an intermediate filament-like protein. In addition, new elements were identified which have no apparent eukaryotic counterparts, such as the deviant Walker A-type ATPases, bactofilins, and several novel elements recently identified in streptomycetes, highlighting the unsuspected complexity of cytostructural components in bacteria. In vivo multidimensional fluorescence microscopy has demonstrated the dynamics of the bacterial intracellular world, and yet we are only starting to understand the role of cytoskeletal elements. Elucidating structure-function relationships remains challenging, because core cytoskeletal protein motifs show remarkable plasticity, with one element often performing various functions and one function being performed by several types of elements. Structural imaging techniques, such as cryo-electron tomography in combination with advanced light microscopy, are providing the missing links and enabling scientists to answer many outstanding questions regarding prokaryotic cellular architecture. Here we review the recent advances made toward understanding the different roles of cytoskeletal proteins in bacteria, with particular emphasis on modern imaging approaches.
Collapse
|
12
|
McDermott G, Fox DM, Epperly L, Wetzler M, Barron AE, Le Gros MA, Larabell CA. Visualizing and quantifying cell phenotype using soft X-ray tomography. Bioessays 2012; 34:320-7. [PMID: 22290620 DOI: 10.1002/bies.201100125] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Soft X-ray tomography (SXT) is an imaging technique capable of characterizing and quantifying the structural phenotype of cells. In particular, SXT is used to visualize the internal architecture of fully hydrated, intact eukaryotic and prokaryotic cells at high spatial resolution (50 nm or better). Image contrast in SXT is derived from the biochemical composition of the cell, and obtained without the need to use potentially damaging contrast-enhancing agents, such as heavy metals. The cells are simply cryopreserved prior to imaging, and are therefore imaged in a near-native state. As a complement to structural imaging by SXT, the same specimen can now be imaged by correlated cryo-light microscopy. By combining data from these two modalities specific molecules can be localized directly within the framework of a high-resolution, three-dimensional reconstruction of the cell. This combination of data types allows sophisticated analyses to be carried out on the impact of environmental and/or genetic factors on cell phenotypes.
Collapse
Affiliation(s)
- Gerry McDermott
- Department of Anatomy, University of California, San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Jahn KA, Barton DA, Kobayashi K, Ratinac KR, Overall RL, Braet F. Correlative microscopy: providing new understanding in the biomedical and plant sciences. Micron 2011; 43:565-82. [PMID: 22244153 DOI: 10.1016/j.micron.2011.12.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 12/16/2022]
Abstract
Correlative microscopy is the application of two or more distinct microscopy techniques to the same region of a sample, generating complementary morphological, structural and chemical information that exceeds what is possible with any single technique. As a variety of complementary microscopy approaches rather than a specific type of instrument, correlative microscopy has blossomed in recent years as researchers have recognised that it is particularly suited to address the intricate questions of the modern biological sciences. Specialised technical developments in sample preparation, imaging methods, visualisation and data analysis have also accelerated the uptake of correlative approaches. In light of these advances, this critical review takes the reader on a journey through recent developments in, and applications of, correlative microscopy, examining its impact in biomedical research and in the field of plant science. This twin emphasis gives a unique perspective into use of correlative microscopy in fields that often advance independently, and highlights the lessons that can be learned from both fields for the future of this important area of research.
Collapse
Affiliation(s)
- K A Jahn
- Australian Centre for Microscopy & Microanalysis and The School of Biological Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
14
|
Murphy GE, Narayan K, Lowekamp BC, Hartnell LM, Heymann JAW, Fu J, Subramaniam S. Correlative 3D imaging of whole mammalian cells with light and electron microscopy. J Struct Biol 2011; 176:268-78. [PMID: 21907806 PMCID: PMC3210386 DOI: 10.1016/j.jsb.2011.08.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 08/22/2011] [Accepted: 08/25/2011] [Indexed: 01/19/2023]
Abstract
We report methodological advances that extend the current capabilities of ion-abrasion scanning electron microscopy (IA-SEM), also known as focused ion beam scanning electron microscopy, a newly emerging technology for high resolution imaging of large biological specimens in 3D. We establish protocols that enable the routine generation of 3D image stacks of entire plastic-embedded mammalian cells by IA-SEM at resolutions of ∼10-20nm at high contrast and with minimal artifacts from the focused ion beam. We build on these advances by describing a detailed approach for carrying out correlative live confocal microscopy and IA-SEM on the same cells. Finally, we demonstrate that by combining correlative imaging with newly developed tools for automated image processing, small 100nm-sized entities such as HIV-1 or gold beads can be localized in SEM image stacks of whole mammalian cells. We anticipate that these methods will add to the arsenal of tools available for investigating mechanisms underlying host-pathogen interactions, and more generally, the 3D subcellular architecture of mammalian cells and tissues.
Collapse
Affiliation(s)
- Gavin E. Murphy
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892 USA
| | - Kedar Narayan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892 USA
| | - Bradley C. Lowekamp
- Office of High Performance Computing and Communications, National Library of Medicine, NIH, Bethesda, MD 20814 USA
| | - Lisa M. Hartnell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892 USA
| | - Jurgen A. W. Heymann
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892 USA
| | - Jing Fu
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892 USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892 USA
| |
Collapse
|
15
|
Zheng T, Li W, Guan Y, Song X, Xiong Y, Liu G, Tian Y. Quantitative 3D imaging of yeast by hard X-ray tomography. Microsc Res Tech 2011; 75:662-6. [PMID: 22505187 DOI: 10.1002/jemt.21108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/16/2011] [Indexed: 11/07/2022]
Abstract
Full-field hard X-ray tomography could be used to obtain three-dimensional (3D) nanoscale structures of biological samples. The image of the fission yeast, Schizosaccharomyces pombe, was clearly visualized based on Zernike phase contrast imaging technique and heavy metal staining method at a spatial resolution better than 50 nm at the energy of 8 keV. The distributions and shapes of the organelles during the cell cycle were clearly visualized and two types of organelle were distinguished. The results for cells during various phases were compared and the ratios of organelle volume to cell volume can be analyzed quantitatively. It showed that the ratios remained constant between growth and division phase and increased strongly in stationary phase, following the shape and size of two types of organelles changes. Our results demonstrated that hard X-ray microscopy was a complementary method for imaging and revealing structural information for biological samples.
Collapse
Affiliation(s)
- Ting Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Schmidt F, Kühbacher M, Gross U, Kyriakopoulos A, Schubert H, Zehbe R. From 2D slices to 3D volumes: Image based reconstruction and morphological characterization of hippocampal cells on charged and uncharged surfaces using FIB/SEM serial sectioning. Ultramicroscopy 2011; 111:259-66. [DOI: 10.1016/j.ultramic.2010.12.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 11/26/2010] [Accepted: 12/17/2010] [Indexed: 11/25/2022]
|
17
|
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped, positive-sense single-stranded RNA virus belonging to the Arteriviridae family. Arteriviruses and coronaviruses are grouped together in the order Nidovirales, based on similarities in genome organization and expression strategy. Over the past decade, crystal structures of several viral proteins, electron microscopic studies of the virion, as well as biochemical and in vivo studies on protein-protein interactions have led to a greatly increased understanding of PRRSV structural biology. At this point, crystal structures are available for the viral proteases NSP1α, NSP1β and NSP4 and the nucleocapsid protein, N. The NSP1α and NSP1β structures have revealed additional non-protease domains that may be involved in modulation of host functions. The N protein forms a dimer with a novel fold so far only seen in PRRSV and other nidoviruses. Cryo-electron tomographic studies have shown the three-dimensional organization of the PRRSV virion and suggest that the viral nucleocapsid has an asymmetric, linear arrangement, rather than the isometric core previously described. Together, these studies have revealed a closer structural relationship between arteri- and coronaviruses than previously anticipated.
Collapse
Affiliation(s)
- Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
18
|
Aronova MA, Sousa AA, Zhang G, Leapman RD. Limitations of beam damage in electron spectroscopic tomography of embedded cells. J Microsc 2010; 239:223-32. [PMID: 20701660 DOI: 10.1111/j.1365-2818.2010.03376.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Elemental mapping in the energy filtering transmission electron microscope (EFTEM) can be extended into three dimensions (3D) by acquiring a series of two-dimensional (2D) core-edge images from a specimen oriented over a range of tilt angles, and then reconstructing the volume using tomographic methods. EFTEM has been applied to imaging the distribution of biological molecules in 2D, e.g. nucleic acid and protein, in sections of plastic-embedded cells, but no systematic study has been undertaken to assess the extent to which beam damage limits the available information in 3D. To address this question, 2D elemental maps of phosphorus and nitrogen were acquired from unstained sections of plastic-embedded isolated mouse thymocytes. The variation in elemental composition, residual specimen mass and changes in the specimen morphology were measured as a function of electron dose. Whereas 40% of the total specimen mass was lost at doses above 10(6) e(-)/nm(2), no significant loss of phosphorus or nitrogen was observed for doses as high as 10(8) e(-)/nm(2). The oxygen content decreased from 25 + or - 2 to 9 + or - 2 atomic percent at an electron dose of 10(4) e(-)/nm(2), which accounted for a major component of the total mass loss. The specimen thickness decreased by 50% after a dose of 10(8) e(-)/nm(2), and a lateral shrinkage of 9.5 + or - 2.0% occurred from 2 x 10(4) to 10(8) e(-)/nm(2). At doses above 10(7) e(-)/nm(2), damage could be observed in the bright field as well in the core edge images, which is attributed to further loss of oxygen and carbon atoms. Despite these artefacts, electron tomograms obtained from high-pressure frozen and freeze-substituted sections of C. elegans showed that it is feasible to obtain useful 3D phosphorus and nitrogen maps, and thus to reveal quantitative information about the subcellular distributions of nucleic acids and proteins.
Collapse
Affiliation(s)
- M A Aronova
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
19
|
Poggio M, Degen CL. Force-detected nuclear magnetic resonance: recent advances and future challenges. NANOTECHNOLOGY 2010; 21:342001. [PMID: 20671365 DOI: 10.1088/0957-4484/21/34/342001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.
Collapse
Affiliation(s)
- M Poggio
- Department of Physics, University of Basel, Basel, Switzerland
| | | |
Collapse
|
20
|
Su Y, Nykanen M, Jahn KA, Whan R, Cantrill L, Soon LL, Ratinac KR, Braet F. Multi-dimensional correlative imaging of subcellular events: combining the strengths of light and electron microscopy. Biophys Rev 2010; 2:121-135. [PMID: 28510069 DOI: 10.1007/s12551-010-0035-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 07/02/2010] [Indexed: 01/26/2023] Open
Abstract
To genuinely understand how complex biological structures function, we must integrate knowledge of their dynamic behavior and of their molecular machinery. The combined use of light or laser microscopy and electron microscopy has become increasingly important to our understanding of the structure and function of cells and tissues at the molecular level. Such a combination of two or more different microscopy techniques, preferably with different spatial- and temporal-resolution limits, is often referred to as 'correlative microscopy'. Correlative imaging allows researchers to gain additional novel structure-function information, and such information provides a greater degree of confidence about the structures of interest because observations from one method can be compared to those from the other method(s). This is the strength of correlative (or 'combined') microscopy, especially when it is combined with combinatorial or non-combinatorial labeling approaches. In this topical review, we provide a brief historical perspective of correlative microscopy and an in-depth overview of correlative sample-preparation and imaging methods presently available, including future perspectives on the trend towards integrative microscopy and microanalysis.
Collapse
Affiliation(s)
- Yingying Su
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Madsen Building F09, Sydney, NSW, 2006, Australia
| | - Marko Nykanen
- Kids Research Institute, Children's Hospital Westmead, Westmead, Locked Bag 4001, NSW, 2145, Australia
| | - Kristina A Jahn
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Madsen Building F09, Sydney, NSW, 2006, Australia
| | - Renee Whan
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Madsen Building F09, Sydney, NSW, 2006, Australia
| | - Laurence Cantrill
- Kids Research Institute, Children's Hospital Westmead, Westmead, Locked Bag 4001, NSW, 2145, Australia
| | - Lilian L Soon
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Madsen Building F09, Sydney, NSW, 2006, Australia
| | - Kyle R Ratinac
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Madsen Building F09, Sydney, NSW, 2006, Australia
| | - Filip Braet
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Madsen Building F09, Sydney, NSW, 2006, Australia.
| |
Collapse
|
21
|
Abstract
Bioimaging contributes significantly to our understanding of plant virus infections. In the present review, we describe technical advances that enable imaging of the infection process at previously unobtainable levels. We highlight how such new advances in subcellular imaging are contributing to a detailed dissection of all stages of the viral infection process. Specifically, we focus on: (i) the increasingly detailed localizations of viral proteins enabled by a diversifying palette of cellular markers; (ii) approaches using fluorescence microscopy for the functional analysis of proteins in vivo; (iii) the imaging of viral RNAs; (iv) methods that bridge the gap between optical and electron microscopy; and (v) methods that are blurring the distinction between imaging and structural biology. We describe the advantages and disadvantages of such techniques and place them in the broader perspective of their utility in analysing plant virus infection.
Collapse
|
22
|
Abstract
Electron cryotomography (ECT) is an emerging technology that allows thin samples such as macromolecular complexes and small bacterial cells to be imaged in 3-D in a nearly native state to "molecular" ( approximately 4 nm) resolution. As such, ECT is beginning to deliver long-awaited insight into the positions and structures of cytoskeletal fi laments, cell wall elements, motility machines, chemoreceptor arrays, internal compartments, and other ultrastructures. This article describes the technique and summarizes its contributions to bacterial cell biology. For comparable recent reviews, see (Subramaniam 2005; Jensen and Briegel 2007; Murphy and Jensen 2007; Li and Jensen 2009). For reviews on the history, technical details, and broader application of electron tomography in general, see for example (Subramaniam and Milne 2004; Lucić et al. 2005; Leis et al. 2008; Midgley and Dunin-Borkowski 2009).
Collapse
Affiliation(s)
- Elitza I Tocheva
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
23
|
Murphy GE, Lowekamp BC, Zerfas PM, Chandler RJ, Narasimha R, Venditti CP, Subramaniam S. Ion-abrasion scanning electron microscopy reveals distorted liver mitochondrial morphology in murine methylmalonic acidemia. J Struct Biol 2010; 171:125-32. [PMID: 20399866 DOI: 10.1016/j.jsb.2010.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 12/31/2022]
Abstract
Methylmalonic acidemia is a lethal inborn error of metabolism that causes mitochondrial impairment, multi-organ dysfunction and a shortened lifespan. Previous transmission electron microscope studies of thin sections from normal (Mut(+/+)) and diseased (Mut(-/-)) tissue found that the mitochondria appear to occupy a progressively larger volume of mutant cells with age, becoming megamitochondria. To assess changes in shape and volume of mitochondria resulting from the mutation, we carried out ion-abrasion scanning electron microscopy (IA-SEM), a method for 3D imaging that involves the iterative use of a focused gallium ion beam to abrade the surface of the specimen, and a scanning electron beam to image the newly exposed surface. Using IA-SEM, we show that mitochondria are more convoluted and have a broader distribution of sizes in the mutant tissue. Compared to normal cells, mitochondria from mutant cells have a larger surface-area-to-volume ratio, which can be attributed to their convoluted shape and not to their elongation or reduced volume. The 3D imaging approach and image analysis described here could therefore be useful as a diagnostic tool for the evaluation of disease progression in aberrant cells at resolutions higher than that currently achieved using confocal light microscopy.
Collapse
Affiliation(s)
- Gavin E Murphy
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Tesar DB, Björkman PJ. An intracellular traffic jam: Fc receptor-mediated transport of immunoglobulin G. Curr Opin Struct Biol 2010; 20:226-33. [PMID: 20171874 DOI: 10.1016/j.sbi.2010.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/20/2010] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
Recent advances in imaging techniques along with more powerful in vitro and in vivo models of receptor-mediated ligand transport are facilitating advances in our understanding of how cells efficiently direct receptors and their cargo to target destinations within the cytoplasm and at the plasma membrane. Specifically, light and 3D electron microscopy studies examining the trafficking behavior of the neonatal Fc receptor (FcRn), a transport receptor for immunoglobulin G (IgG), have given us new insights into the dynamic interplay between the structural components of the cytosolic trafficking machinery, its protein regulators, and the receptors it directs to various locations within the cell. These studies build upon previous biochemical characterizations of FcRn transport and are allowing us to begin formulation of a more complete model for the intracellular trafficking of receptor-ligand complexes.
Collapse
Affiliation(s)
- Devin B Tesar
- Department of Antibody Engineering, Genentech, South San Francisco, CA 94080, USA.
| | | |
Collapse
|
25
|
Liu J, Wright ER, Winkler H. 3D visualization of HIV virions by cryoelectron tomography. Methods Enzymol 2010; 483:267-90. [PMID: 20888479 DOI: 10.1016/s0076-6879(10)83014-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structure of the human immunodeficiency virus (HIV) and some of its components have been difficult to study in three-dimensions (3D) primarily because of their intrinsic structural variability. Recent advances in cryoelectron tomography (cryo-ET) have provided a new approach for determining the 3D structures of the intact virus, the HIV capsid, and the envelope glycoproteins located on the viral surface. A number of cryo-ET procedures related to specimen preservation, data collection, and image processing are presented in this chapter. The techniques described herein are well suited for determining the ultrastructure of bacterial and viral pathogens and their associated molecular machines in situ at nanometer resolution.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas, USA
| | | | | |
Collapse
|
26
|
Abstract
Giardia intestinalis, a common parasitic protist, possesses a complex microtubule cytoskeleton critical for cellular function and transitioning between the cyst and trophozoite life cycle stages. The giardial microtubule cytoskeleton is comprised of highly dynamic and stable structures. Novel microtubule structures include the ventral disc that is essential for the parasite's attachment to the intestinal villi to avoid peristalsis. The completed Giardia genome combined with new molecular genetic tools and live imaging will aid in the characterization and analysis of cytoskeletal dynamics in Giardia. Fundamental areas of giardial cytoskeletal biology remain to be explored and knowledge of the molecular mechanisms of cytoskeletal functioning is needed to better understand Giardia's unique biology and pathogenesis.
Collapse
Affiliation(s)
- Scott C Dawson
- Department of Microbiology, One Shields Avenue, UC Davis, Davis, CA 95616, USA
| | | |
Collapse
|
27
|
Affiliation(s)
- F Braet
- Australian Key Centre for Microscopy and Microanalysis (AKCMM), Electron Microscopy Unit, The University of Sydney, NSW, Australia
| | | |
Collapse
|
28
|
Jahn KA, Barton DA, Su Y, Riches J, Kable EPW, Soon LL, Braet F. Correlative fluorescence and transmission electron microscopy: an elegant tool to study the actin cytoskeleton of whole-mount (breast) cancer cells. J Microsc 2009; 235:282-92. [PMID: 19754723 DOI: 10.1111/j.1365-2818.2009.03223.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Elucidating the structure and dynamics of lamellipodia and filopodia in response to different stimuli is a topic of continuing interest in cancer cells as these structures may be attractive targets for therapeutic purposes. Interestingly, a close functional relationship between these actin-rich protrusions and specialized membrane domains has been recently demonstrated. The aim of this study was therefore to investigate the fine organization of these actin-rich structures and examine how they structurally may relate to detergent-resistant membrane (DRM) domains in the MTLn3 EGF/serum starvation model. For this reason, we designed a straightforward and alternative method to study cytoskeleton arrays and their associated structures by means of correlative fluorescence (/laser)- and electron microscopy (CFEM). CFEM on whole mounted breast cancer cells revealed that a lamellipodium is composed of an intricate filamentous actin web organized in various patterns after different treatments. Both actin dots and DRM's were resolved, and were closely interconnected with the surrounding cytoskeleton. Long actin filaments were repeatedly observed extending beyond the leading edge and their density and length varied after different treatments. Furthermore, CFEM also allowed us to demonstrate the close structural association of DRMs with the cytoskeleton in general and the filamentous/dot-like structural complexes in particular, suggesting that they are all functionally linked and consequently may regulate the cell's fingertip dynamics. Finally, electron tomographic modelling on the same CFEM samples confirmed that these extensions are clearly embedded within the cytoskeletal matrix of the lamellipodium.
Collapse
Affiliation(s)
- K A Jahn
- Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, NSW, Australia.
| | | | | | | | | | | | | |
Collapse
|
29
|
Hohmann-Marriott MF, Roberson RW. Exploring photosynthesis by electron tomography. PHOTOSYNTHESIS RESEARCH 2009; 102:177-188. [PMID: 19548110 DOI: 10.1007/s11120-009-9452-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 05/28/2009] [Indexed: 05/28/2023]
|
30
|
Milne JLS, Subramaniam S. Cryo-electron tomography of bacteria: progress, challenges and future prospects. Nat Rev Microbiol 2009; 7:666-75. [PMID: 19668224 DOI: 10.1038/nrmicro2183] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in three-dimensional electron microscopy provide remarkable tools to image the interior of bacterial cells. Glimpses of cells at resolutions that are 1-2 orders of magnitude higher than those currently attained with light microscopy can now be obtained with cryo-electron tomography, especially when used in combination with new tools for image averaging. This Review highlights recent advances in this area and provides an assessment of the general applicability, current limitations and type of structural information that can be obtained about the organization of intact cells using tomography. Possible future directions for whole cell imaging are also discussed.
Collapse
Affiliation(s)
- Jacqueline L S Milne
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
31
|
Scott K, Ritchie NWM. Analysis of 3D elemental mapping artefacts in biological specimens using Monte Carlo simulation. J Microsc 2009; 233:331-9. [PMID: 19220700 DOI: 10.1111/j.1365-2818.2009.03124.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper, we present Monte Carlo simulation results demonstrating the feasibility of using the focused ion beam based X-ray microanalysis technique (FIB-EDS) for the 3D elemental analysis of biological samples. In this study, we used a marine diatom Thalassiosira pseudonana as our model organism and NISTMonte for the Monte Carlo simulations. We explored several beam energies commonly used for the X-ray microanalysis to examine their effects on the resulting 3D elemental volume of the model organism. We also performed a preliminary study on the sensitivity of X-ray analysis for detecting nanoparticles in the model. For the conditions considered in this work, we show that the X-ray mapping performed using the 5 keV beam energy results in 3D elemental distributions that closely reflect the elemental distributions in the original model. At 5 keV, the depth resolution of the X-ray maps is about 250 nm for the model organism. We also show that the nanoparticles that are 50 nm in diameter or greater are easily located. Although much work is still needed in generating more accurate biological models and simulating experimental conditions relevant to these samples, our results indicate that FIB-EDS is a promising technique for the 3D elemental analysis of some biological specimens.
Collapse
Affiliation(s)
- K Scott
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
| | | |
Collapse
|
32
|
Heymann JAW, Shi D, Kim S, Bliss D, Milne JLS, Subramaniam S. 3D imaging of mammalian cells with ion-abrasion scanning electron microscopy. J Struct Biol 2008; 166:1-7. [PMID: 19116171 DOI: 10.1016/j.jsb.2008.11.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 10/18/2008] [Accepted: 11/17/2008] [Indexed: 12/20/2022]
Abstract
Understanding the hierarchical organization of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. We are using ion-abrasion scanning electron microscopy (IA-SEM) to visualize this hierarchical organization in an approach that combines focused ion-beam milling with scanning electron microscopy. Here, we extend our previous studies on imaging yeast cells to image subcellular architecture in human melanoma cells and melanocytes at resolutions as high as approximately 6 and approximately 20 nm in the directions parallel and perpendicular, respectively, to the direction of ion-beam milling. The 3D images demonstrate the striking spatial relationships between specific organelles such as mitochondria and membranes of the endoplasmic reticulum, and the distribution of unique cellular components such as melanosomes. We also show that 10nm-sized gold particles and quantum dot particles with 7 nm-sized cores can be detected in single cross-sectional images. IA-SEM is thus a useful tool for imaging large mammalian cells in their entirety at resolutions in the nanometer range.
Collapse
Affiliation(s)
- Jurgen A W Heymann
- Laboratory of Cell Biology, Center for Cancer Research National Cancer Institute, NIH, Building 50, Room 4306, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
33
|
Vicidomini G, Gagliani MC, Canfora M, Cortese K, Frosi F, Santangelo C, Di Fiore PP, Boccacci P, Diaspro A, Tacchetti C. High data output and automated 3D correlative light-electron microscopy method. Traffic 2008; 9:1828-38. [PMID: 18817522 PMCID: PMC2635477 DOI: 10.1111/j.1600-0854.2008.00815.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Correlative light/electron microscopy (CLEM) allows the simultaneous observation of a given subcellular structure by fluorescence light microscopy (FLM) and electron microscopy. The use of this approach is becoming increasingly frequent in cell biology. In this study, we report on a new high data output CLEM method based on the use of cryosections. We successfully applied the method to analyze the structure of rough and smooth Russell bodies used as model systems. The major advantages of our method are (i) the possibility to correlate several hundreds of events at the same time, (ii) the possibility to perform three-dimensional (3D) correlation, (iii) the possibility to immunolabel both endogenous and recombinantly expressed proteins at the same time and (iv) the possibility to combine the high data analysis capability of FLM with the high precision–accuracy of transmission electron microscopy in a CLEM hybrid morphometry analysis. We have identified and optimized critical steps in sample preparation, defined routines for sample analysis and retracing of regions of interest, developed software for semi/fully automatic 3D reconstruction and defined preliminary conditions for an hybrid light/electron microscopy morphometry approach.
Collapse
|
34
|
Hanssen E, Hawthorne P, Dixon MWA, Trenholme KR, McMillan PJ, Spielmann T, Gardiner DL, Tilley L. Targeted mutagenesis of the ring-exported protein-1 ofPlasmodium falciparumdisrupts the architecture of Maurer's cleft organelles. Mol Microbiol 2008; 69:938-53. [DOI: 10.1111/j.1365-2958.2008.06329.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Liu J, Bartesaghi A, Borgnia MJ, Sapiro G, Subramaniam S. Molecular architecture of native HIV-1 gp120 trimers. Nature 2008; 455:109-13. [PMID: 18668044 DOI: 10.1038/nature07159] [Citation(s) in RCA: 654] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Accepted: 06/10/2008] [Indexed: 11/09/2022]
Abstract
The envelope glycoproteins (Env) of human and simian immunodeficiency viruses (HIV and SIV, respectively) mediate virus binding to the cell surface receptor CD4 on target cells to initiate infection. Env is a heterodimer of a transmembrane glycoprotein (gp41) and a surface glycoprotein (gp120), and forms trimers on the surface of the viral membrane. Using cryo-electron tomography combined with three-dimensional image classification and averaging, we report the three-dimensional structures of trimeric Env displayed on native HIV-1 in the unliganded state, in complex with the broadly neutralizing antibody b12 and in a ternary complex with CD4 and the 17b antibody. By fitting the known crystal structures of the monomeric gp120 core in the b12- and CD4/17b-bound conformations into the density maps derived by electron tomography, we derive molecular models for the native HIV-1 gp120 trimer in unliganded and CD4-bound states. We demonstrate that CD4 binding results in a major reorganization of the Env trimer, causing an outward rotation and displacement of each gp120 monomer. This appears to be coupled with a rearrangement of the gp41 region along the central axis of the trimer, leading to closer contact between the viral and target cell membranes. Our findings elucidate the structure and conformational changes of trimeric HIV-1 gp120 relevant to antibody neutralization and attachment to target cells.
Collapse
Affiliation(s)
- Jun Liu
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
36
|
Ricker A, Liu-Snyder P, Webster TJ. The influence of nano MgO and BaSO4 particle size additives on properties of PMMA bone cement. Int J Nanomedicine 2008; 3:125-31. [PMID: 18488423 DOI: 10.2217/17435889.3.1.125] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A common technique to aid in implant fixation into surrounding bone is to inject bone cement into the space between the implant and surrounding bone. The most common bone cement material used clinically today is poly(methyl methacrylate), or PMMA. Although promising, there are numerous disadvantages of using PMMA in bone fixation applications which has limited its wide spread use. Specifically, the PMMA polymerization reaction is highly exothermic in situ, thus, damaging surrounding bone tissue while curing. In addition, PMMA by itself is not visible using typical medical imaging techniques (such as X-rays required to assess new bone formation surrounding the implant). Lastly, although PMMA does support new bone growth, studies have highlighted decreased osteoblast (bone forming cell) functions on PMMA compared to other common orthopedic coating materials, such as calcium phosphates and hydroxyapatite. For these reasons, the goal of this study was to begin to investigate novel additives to PMMA which can enhance its cytocompatibility properties with osteoblasts, decrease its exothermic reaction when curing, and increase its radiopacity. Results of this study demonstrated that compared to conventional (or micron) equivalents, PMMA with nanoparticles of MgO and BaSO4 reduced harmful exothermic reactions of PMMA during solidification and increased radiopacity, respectively. Moreover, osteoblast adhesion increased on PMMA with nanoparticles of MgO and BaSO4 compared with PMMA alone. This study, thus, suggests that nanoparticles of MgO and BaSO4 should be further studied for improving properties of PMMA for orthopedic applications.
Collapse
Affiliation(s)
- Alyssa Ricker
- Divisions of Engineering and Orthopaedics, 184 Hope Street, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
37
|
Parkinson DY, McDermott G, Etkin LD, Le Gros MA, Larabell CA. Quantitative 3-D imaging of eukaryotic cells using soft X-ray tomography. J Struct Biol 2008; 162:380-6. [PMID: 18387313 PMCID: PMC2505111 DOI: 10.1016/j.jsb.2008.02.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/31/2008] [Accepted: 02/01/2008] [Indexed: 11/20/2022]
Abstract
Imaging has long been one of the principal techniques used in biological and biomedical research. Indeed, the field of cell biology grew out of the first electron microscopy images of organelles in a cell. Since this landmark event, much work has been carried out to image and classify the organelles in eukaryotic cells using electron microscopy. Fluorescently labeled organelles can now be tracked in live cells, and recently, powerful light microscope techniques have pushed the limit of optical resolution to image single molecules. In this paper, we describe the use of soft X-ray tomography, a new tool for quantitative imaging of organelle structure and distribution in whole, fully hydrated eukaryotic Schizosaccharomyces pombe cells. In addition to imaging intact cells, soft X-ray tomography has the advantage of not requiring the use of any staining or fixation protocols--cells are simply transferred from their growth environment to a sample holder and immediately cryofixed. In this way the cells can be imaged in a near native state. Soft X-ray tomography is also capable of imaging relatively large numbers of cells in a short period of time, and is therefore a technique that has the potential to produce information on organelle morphology from statistically significant numbers of cells.
Collapse
Affiliation(s)
- Dilworth Y Parkinson
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
38
|
Garduño E, Wong-Barnum M, Volkmann N, Ellisman MH. Segmentation of electron tomographic data sets using fuzzy set theory principles. J Struct Biol 2008; 162:368-79. [PMID: 18358741 DOI: 10.1016/j.jsb.2008.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 01/25/2008] [Accepted: 01/30/2008] [Indexed: 11/24/2022]
Abstract
In electron tomography the reconstructed density function is typically corrupted by noise and artifacts. Under those conditions, separating the meaningful regions of the reconstructed density function is not trivial. Despite development efforts that specifically target electron tomography manual segmentation continues to be the preferred method. Based on previous good experiences using a segmentation based on fuzzy logic principles (fuzzy segmentation) where the reconstructed density functions also have low signal-to-noise ratio, we applied it to electron tomographic reconstructions. We demonstrate the usefulness of the fuzzy segmentation algorithm evaluating it within the limits of segmenting electron tomograms of selectively stained, plastic embedded spiny dendrites. The results produced by the fuzzy segmentation algorithm within the framework presented are encouraging.
Collapse
Affiliation(s)
- Edgar Garduño
- Depto. Ciencias de la Computación, Instituto de Investigaciones en Matermáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Cd. Universitaria, C.P. 04510, Mexico City, Mexico.
| | | | | | | |
Collapse
|
39
|
Three-dimensional imaging of the highly bent architecture of Bdellovibrio bacteriovorus by using cryo-electron tomography. J Bacteriol 2008; 190:2588-96. [PMID: 18203829 DOI: 10.1128/jb.01538-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bdellovibrio bacteriovorus cells are small deltaproteobacterial cells that feed on other gram-negative bacteria, including human pathogens. Using cryo-electron tomography, we demonstrated that B. bacteriovorus cells are capable of substantial flexibility and local deformation of the outer and inner membranes without loss of cell integrity. These shape changes can occur in less than 2 min, and analysis of the internal architecture of highly bent cells showed that the overall distribution of molecular machines and the nucleoid is similar to that in moderately bent cells. B. bacteriovorus cells appear to contain an extensive internal network of short and long filamentous structures. We propose that rearrangements of these structures, in combination with the unique properties of the cell envelope, may underlie the remarkable ability of B. bacteriovorus cells to find and enter bacterial prey.
Collapse
|
40
|
Abstract
The reconstitution of membrane-associated protein complexes poses significant experimental challenges. The core signaling complex in the bacterial chemotaxis system is an illustrative example: The soluble cytoplasmic signaling proteins CheW and CheA bind to heterogeneous clusters of transmembrane receptor proteins, resulting in an assembly that exhibits cooperative kinase regulation. An understanding of the basis for the cooperativity inherent in the receptor/CheW/CheA interaction, as well as other membrane phenomena, can benefit from functional studies under defined conditions. To meet this need, a simple method was developed to assemble functional complexes on lipid membranes. The method employs a receptor cytoplasmic domain fragment (CF) with a histidine tag and liposomes that contain a Ni(2+) -chelating lipid. Assemblies of CF, CheW, and CheA form spontaneously in the presence of these liposomes, which exhibit the salient biochemical functions of kinase stimulation, cooperative regulation, and CheR-mediated receptor methylation. Although ligand binding phenomena cannot be studied directly with this approach, other factors that influence kinase stimulation and receptor methylation can be explored systematically, including receptor density and competition among stimulating and inhibiting receptor domains. The template-directed assembly of proteins leads to relatively well-defined samples that are amenable to analysis by a number of methods, including light scattering, electron microscopy, and fluorescence resonance energy transfer. The approach promises to be applicable to many systems involving membrane-associated proteins.
Collapse
|
41
|
Hanssen E, Sougrat R, Frankland S, Deed S, Klonis N, Lippincott-Schwartz J, Tilley L. Electron tomography of the Maurer's cleft organelles of Plasmodium falciparum-infected erythrocytes reveals novel structural features. Mol Microbiol 2007; 67:703-18. [PMID: 18067543 DOI: 10.1111/j.1365-2958.2007.06063.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
During intraerythrocytic development, the human malaria parasite, Plasmodium falciparum, establishes membrane-bound compartments, known as Maurer's clefts, outside the confines of its own plasma membrane. The Maurer's compartments are thought to be a crucial component of the machinery for protein sorting and trafficking; however, their ultrastructure is only partly defined. We have used electron tomography to image Maurer's clefts of 3D7 strain parasites. The compartments are revealed as flattened structures with a translucent lumen and a more electron-dense coat. They display a complex and convoluted morphology, and some regions are modified with surface nodules, each with a circular cross-section of approximately 25 nm. Individual 25 nm vesicle-like structures are also seen in the erythrocyte cytoplasm and associated with the red blood cell membrane. The Maurer's clefts are connected to the red blood cell membrane by regions with extended stalk-like profiles. Immunogold labelling with specific antibodies confirms differential labelling of the Maurer's clefts and the parasitophorous vacuole and erythrocyte membranes. Spot fluorescence photobleaching was used to demonstrate the absence of a lipid continuum between the Maurer's clefts and parasite membranes and the host plasma membrane.
Collapse
Affiliation(s)
- Eric Hanssen
- Department of Biochemistry and Centre of Excellence for Coherent X-ray Science, La Troube University, Melbourne, Victoria 3086, Australia
| | | | | | | | | | | | | |
Collapse
|
42
|
Bostina M, Bubeck D, Schwartz C, Nicastro D, Filman DJ, Hogle JM. Single particle cryoelectron tomography characterization of the structure and structural variability of poliovirus-receptor-membrane complex at 30 A resolution. J Struct Biol 2007; 160:200-10. [PMID: 17897840 PMCID: PMC2083572 DOI: 10.1016/j.jsb.2007.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 08/08/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Abstract
As a long-term goal we want to use cryoelectron tomography to understand how non-enveloped viruses, such as picornaviruses, enter cells and translocate their genomes across membranes. To this end, we developed new image-processing tools using an in vitro system to model viral interactions with membranes. The complex of poliovirus with its membrane-bound receptors was reconstructed by averaging multiple sub-tomograms, thereby producing three-dimensional maps of surprisingly high-resolution (30 A). Recognizable images of the complex could be produced by averaging as few as 20 copies. Additionally, model-free reconstructions of free poliovirus particles, clearly showing the major surface features, could be calculated from 60 virions. All calculations were designed to avoid artifacts caused by missing information typical for tomographic data ("missing wedge"). To investigate structural and conformational variability we applied a principal component analysis classification to specific regions. We show that the missing wedge causes a bias in classification, and that this bias can be minimized by supplementation with data from the Fourier transform of the averaged structure. After classifying images of the receptor into groups with high similarity, we were able to see differences in receptor density consistent with the known variability in receptor glycosylation.
Collapse
Affiliation(s)
- Mihnea Bostina
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Doryen Bubeck
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Cindi Schwartz
- Laboratory for 3D Electron Microscopy of Cells, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Daniela Nicastro
- Laboratory for 3D Electron Microscopy of Cells, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - David J. Filman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - James M. Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- * Corresponding author: James M. Hogle, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115. Phone: (617) 432-3918. Fax: (617) 432-4360. E-mail:
| |
Collapse
|
43
|
Liu J, McBride MJ, Subramaniam S. Cell surface filaments of the gliding bacterium Flavobacterium johnsoniae revealed by cryo-electron tomography. J Bacteriol 2007; 189:7503-6. [PMID: 17693495 PMCID: PMC2168446 DOI: 10.1128/jb.00957-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavobacterium johnsoniae cells glide rapidly over surfaces by an as-yet-unknown mechanism. Using cryo-electron tomography, we show that wild-type cells display tufts of approximately 5-nm-wide cell surface filaments that appear to be anchored to the inner surface of the outer membrane. These filaments are absent in cells of a nonmotile gldF mutant but are restored upon expression of plasmid-encoded GldF, a component of a putative ATP-binding cassette transporter.
Collapse
Affiliation(s)
- Jun Liu
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
44
|
Sougrat R, Bartesaghi A, Lifson JD, Bennett AE, Bess JW, Zabransky DJ, Subramaniam S. Electron tomography of the contact between T cells and SIV/HIV-1: implications for viral entry. PLoS Pathog 2007; 3:e63. [PMID: 17480119 PMCID: PMC1864992 DOI: 10.1371/journal.ppat.0030063] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 03/19/2007] [Indexed: 12/03/2022] Open
Abstract
The envelope glycoproteins of primate lentiviruses, including human and simian immunodeficiency viruses (HIV and SIV), are heterodimers of a transmembrane glycoprotein (usually gp41), and a surface glycoprotein (gp120), which binds CD4 on target cells to initiate viral entry. We have used electron tomography to determine the three-dimensional architectures of purified SIV virions in isolation and in contact with CD4+ target cells. The trimeric viral envelope glycoprotein surface spikes are heterogeneous in appearance and typically ∼120 Å long and ∼120 Å wide at the distal end. Docking of SIV or HIV-1 on the T cell surface occurs via a neck-shaped contact region that is ∼400 Å wide and consistently consists of a closely spaced cluster of five to seven rod-shaped features, each ∼100 Å long and ∼100 Å wide. This distinctive structure is not observed when viruses are incubated with T lymphocytes in the presence of anti-CD4 antibodies, the CCR5 antagonist TAK779, or the peptide entry inhibitor SIVmac251 C34. For virions bound to cells, few trimers were observed away from this cluster at the virion–cell interface, even in cases where virus preparations showing as many as 70 envelope glycoprotein trimers per virus particle were used. This contact zone, which we term the “entry claw”, provides a spatial context to understand the molecular mechanisms of viral entry. Determination of the molecular composition and structure of the entry claw may facilitate the identification of improved drugs for the inhibition of HIV-1 entry. Retroviruses such as simian immunodeficiency virus and HIV-1 enter target cells by exploiting the interaction between their surface glycoproteins and cell surface receptors. Knowledge of the structures of these glycoproteins and of the molecular details of their interaction with cell surface receptors is of fundamental interest in understanding viral entry mechanisms. Electron tomo-graphy is a powerful approach to determining the three-dimensional structures of large and heterogeneous sub-cellular assemblies such as virus–cell contact regions that cannot easily be analyzed by high-resolution structural methods such as X-ray crystallography. Here, we have used electron tomographic approaches to show that SIV and HIV-1 viruses make contact with T cells via a unique structure that we term the viral “entry claw”, which is typically composed of about six clustered rods of density that span the contact region. Investigation of the structure of the entry claw and the factors that promote its formation could lead to new insights into the design of more effective drugs to inhibit HIV entry.
Collapse
Affiliation(s)
- Rachid Sougrat
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alberto Bartesaghi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffrey D Lifson
- AIDS Vaccine Program, SAIC-Frederick, National Cancer Institue, Frederick, Maryland, United States of America
| | - Adam E Bennett
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Julian W Bess
- AIDS Vaccine Program, SAIC-Frederick, National Cancer Institue, Frederick, Maryland, United States of America
| | - Daniel J Zabransky
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sriram Subramaniam
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Zhang P, Weis RM, Peters PJ, Subramaniam S. Electron tomography of bacterial chemotaxis receptor assemblies. Methods Cell Biol 2007; 79:373-84. [PMID: 17327165 DOI: 10.1016/s0091-679x(06)79014-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Peijun Zhang
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
46
|
Bhavsar AP, Brown ED. Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigms. Mol Microbiol 2007; 60:1077-90. [PMID: 16689786 DOI: 10.1111/j.1365-2958.2006.05169.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the bacterial cell wall has been the subject of decades of investigation, recent studies continue to generate novel and controversial models of its synthesis and assembly. Here we compare and contrast the transcompartmental biosyntheses of peptidoglycan and teichoic acid in Bacillus subtilis. In addition, the current paradigms of B. subtilis wall assembly and structure are distinguished from emerging models of murein insertion and organization. We discuss evidence for the directed, cytoskeleton-dependent insertion of nascent peptidoglycan and the existence of a periplasmic compartment. Furthermore, we summarize the challenges these findings represent to the existing paradigm of murein insertion. Finally, motivated by these new developments, we discuss outstanding issues that remain to be addressed and suggest research directions that may contribute to a better understanding of cell wall assembly in B. subtilis.
Collapse
Affiliation(s)
- Amit P Bhavsar
- Antimicrobial Research Centre and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
47
|
Affiliation(s)
- Friedrich Förster
- Department of Pharmaceutical Sciences, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
48
|
Sosinsky GE, Giepmans BNG, Deerinck TJ, Gaietta GM, Ellisman MH. Markers for correlated light and electron microscopy. Methods Cell Biol 2007; 79:575-91. [PMID: 17327175 DOI: 10.1016/s0091-679x(06)79023-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Gina E Sosinsky
- National Center for Microscopy and Imaging Research and Center for Research in Biological Systems, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
50
|
Abstract
A brief summary of current cryo-electron microscopy methods for processing and imaging biological tissues is provided. The main emphasis is given to two preparation procedures: frozen-hydrated samples because of the remarkable success of cryo-electron crystallography in obtaining near atomic resolution of integral membrane proteins, and high-pressure freezing because of the wide applicability for vitrification of large samples of normal and diseased tissues for ultrastructural and immunolabeling analysis. Methods for examining certain samples with a TEM cryo-stage are summarized. This includes an introduction to the relatively new area of cryo-electron tomography, which offers the possibility to observe the three-dimensional structure of subcellular components using only their natural variations in composition to generate contrast.
Collapse
Affiliation(s)
- M Joseph Costello
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, 27599, USA.
| |
Collapse
|