1
|
Caporale AG, Paradiso R, Palladino M, Arouna N, Izzo L, Ritieni A, De Pascale S, Adamo P. Assessment of Fertility Dynamics and Nutritional Quality of Potato Tubers in a Compost-Amended Mars Regolith Simulant. PLANTS (BASEL, SWITZERLAND) 2024; 13:747. [PMID: 38475593 DOI: 10.3390/plants13050747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Mars exploration will foresee the design of bioregenerative life support systems (BLSSs), in which the use/recycle of in situ resources might allow the production of food crops. However, cultivation on the poorly-fertile Mars regolith will be very challenging. To pursue this goal, we grew potato (Solanum tuberosum L.) plants on the MMS-1 Mojave Mars regolith simulant, pure (R100) and mixed with green compost at 30% (R70C30), in a pot in a cold glasshouse with fertigation. For comparison purposes, we also grew plants on a fluvial sand, pure (S100) and amended with 30% of compost (S70C30), a volcanic soil (VS) and a red soil (RS). We studied the fertility dynamics in the substrates over time and the tuber nutritional quality. We investigated nutrient bioavailability and fertility indicators in the substrates and the quality of potato tubers. Plants completed the life cycle on R100 and produced scarce but nutritious tubers, despite many critical simulant properties. The compost supply enhanced the MMS-1 chemical/physical fertility and determined a higher tuber yield of better nutritional quality. This study demonstrated that a compost-amended Mars simulant could be a proper substrate to produce food crops in BLSSs, enabling it to provide similar ecosystem services of the studied terrestrial soils.
Collapse
Affiliation(s)
- Antonio Giandonato Caporale
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy
| | - Roberta Paradiso
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy
| | - Mario Palladino
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy
| | - Nafiou Arouna
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy
| | - Luana Izzo
- Department of Farmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Alberto Ritieni
- Department of Farmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy
| | - Paola Adamo
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy
| |
Collapse
|
2
|
Tarasashvili MV, Elbakidze K, Doborjginidze ND, Gharibashvili ND. Carbonate precipitation and nitrogen fixation in AMG (Artificial Martian Ground) by cyanobacteria. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:65-77. [PMID: 37087180 DOI: 10.1016/j.lssr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
This article describes experiments performed to study the survival, growth, specific adaptations and bioremediation potential of certain extreme cyanobacteria strains within a simulation of the atmospheric composition, temperature and pressure expected in a future Martian greenhouse. Initial species have been obtained from Mars-analogue sites in Georgia. The results clearly demonstrate that specific biochemical adaptations allow these autotrophs to metabolize within AMG (Artificial Martian Ground) and accumulate biogenic carbon and nitrogen. These findings may thus contribute to the development of future Martian agriculture, as well as other aspects of the life-support systems at habitable Mars stations. The study shows that carbonate precipitation and nitrogen fixation, performed by cyanobacterial communities thriving within the simulated Martian greenhouse conditions, are cross-linked biological processes. At the same time, the presence of the perchlorates (at low concentrations) in the Martian ground may serve as the initial source of oxygen and, indirectly, hydrogen via photo-Fenton reactions. Various carbonates, ammonium and nitrate salts were obtained as the result of these experiments. These affect the pH, salinity and solubility of the AMG and its components, and so the AMG's scanty biogenic properties improved, which is essential for the sustainable growth of the agricultural crops. Therefore, the use of microorganisms for the biological remediation and continuous in situ fertilization of Artificial Martian Ground is possible.
Collapse
Affiliation(s)
- M V Tarasashvili
- BTU - Business and Technology University, 82 Ilia Chavchavadze Avenue, 0179, Tbilisi, Georgia.
| | - Kh Elbakidze
- BTU - Business and Technology University, 82 Ilia Chavchavadze Avenue, 0179, Tbilisi, Georgia
| | - N D Doborjginidze
- GSRA - Georgian Space Research Agency, 4 Vasil Petriashvili Street, 0179, Tbilisi, Georgia
| | - N D Gharibashvili
- GSRA - Georgian Space Research Agency, 4 Vasil Petriashvili Street, 0179, Tbilisi, Georgia; SpaceFarms Ltd, 14 Kostava Street, 0108, Tbilisi, Georgia
| |
Collapse
|
3
|
Ramalho TP, Chopin G, Salman L, Baumgartner V, Heinicke C, Verseux C. On the growth dynamics of the cyanobacterium Anabaena sp. PCC 7938 in Martian regolith. NPJ Microgravity 2022; 8:43. [PMID: 36289210 PMCID: PMC9606272 DOI: 10.1038/s41526-022-00240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/12/2022] [Indexed: 11/08/2022] Open
Abstract
The sustainability of crewed infrastructures on Mars will depend on their abilities to produce consumables on site. These abilities may be supported by diazotrophic, rock-leaching cyanobacteria: from resources naturally available on Mars, they could feed downstream biological processes and lead to the production of oxygen, food, fuels, structural materials, pharmaceuticals and more. The relevance of such a system will be dictated largely by the efficiency of regolith utilization by cyanobacteria. We therefore describe the growth dynamics of Anabaena sp. PCC 7938 as a function of MGS-1 concentration (a simulant of a widespread type of Martian regolith), of perchlorate concentration, and of their combination. To help devise improvement strategies and predict dynamics in regolith of differing composition, we identify the limiting element in MGS-1 - phosphorus - and its concentration-dependent effect on growth. Finally, we show that, while maintaining cyanobacteria and regolith in a single compartment can make the design of cultivation processes challenging, preventing direct physical contact between cells and grains may reduce growth. Overall, we hope for the knowledge gained here to support both the design of cultivation hardware and the modeling of cyanobacterium growth within.
Collapse
Affiliation(s)
- Tiago P Ramalho
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Guillaume Chopin
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Lina Salman
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Vincent Baumgartner
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Christiane Heinicke
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Cyprien Verseux
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany.
| |
Collapse
|
4
|
Selection of Anabaena sp. PCC 7938 as a Cyanobacterium Model for Biological ISRU on Mars. Appl Environ Microbiol 2022; 88:e0059422. [PMID: 35862672 PMCID: PMC9361815 DOI: 10.1128/aem.00594-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Crewed missions to Mars are expected to take place in the coming decades. After short-term stays, a permanent presence will be desirable to enable a wealth of scientific discoveries. This will require providing crews with life-support consumables in amounts that are too large to be imported from Earth. Part of these consumables could be produced on site with bioprocesses, but the feedstock should not have to be imported. A solution under consideration lies in using diazotrophic, rock-weathering cyanobacteria as primary producers: fed with materials naturally available on site, they would provide the nutrients required by other organisms. This concept has recently gained momentum but progress is slowed by a lack of consistency across contributing teams, and notably of a shared model organism. With the hope to address this issue, we present the work performed to select our current model. We started with preselected strains from the Nostocaceae family. After sequencing the genome of Anabaena sp. PCC 7938-the only one not yet available-we compared the strains' genomic data to determine their relatedness and provide insights into their physiology. We then assessed and compared relevant features: chiefly, their abilities to utilize nutrients from Martian regolith, their resistance to perchlorates (toxic compounds present in the regolith), and their suitability as feedstock for secondary producers (here a heterotrophic bacterium and a higher plant). This led to the selection of Anabaena sp. PCC 7938, which we propose as a model cyanobacterium for the development of bioprocesses based on Mars's natural resources. IMPORTANCE The sustainability of crewed missions to Mars could be increased by biotechnologies which are connected to resources available on site via primary producers: diazotrophic, rock-leaching cyanobacteria. Indeed, this could greatly reduce the mass of payloads to be imported from Earth. The concept is gaining momentum but progress is hindered by a lack of consistency across research teams. We consequently describe the selection process that led to the choice of our model strain, demonstrate its relevance to the field, and propose it as a shared model organism. We expect this contribution to support the development of cyanobacterium-based biotechnologies on Mars.
Collapse
|
5
|
Metaproteomics, Heterotrophic Growth, and Distribution of Nitrosomonas europaea and Nitrobacter winogradskyi after Long-Term Operation of an Autotrophic Nitrifying Biofilm Reactor. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bioregenerative life support systems (BLSS) are currently in development to tackle low recovery efficiencies, high energy demands, as well as food, water, and oxygen production challenges through the regeneration of nutrients from waste streams. The MELiSSA pilot plant has been developed as a testbed for regenerative life support system bioreactor operation and characterization. As nitrogen is a vital resource in such systems, we studied the functional composition of a new packed-bed nitrifying bioreactor inoculated with a co-culture of Nitrosomonas europaea (ATCC 25978) and Nitrobacter winogradskyi (ATCC 25391). After 840 days of autotrophic continuous cultivation, the packed-bed was sampled at five vertical positions, each with three horizontal positions, and the biomass at each position was characterized via qPCR, 16S amplicon sequencing, and liquid chromatography tandem mass spectrometry. The total number of cells within the different sections fluctuated around 8.95 ± 5.10 × 107 cells/mL of beads. Based on 16S amplicons and protein content, N. europaea and N. winogradskyi constituted overall 44.07 ± 11.75% and 57.53 ± 12.04% of the nitrifying bioreactor, respectively, indicating the presence of a heterotrophic population that, even after such a long operation time, did not affect the nitrification function of the bioreactor. In addition, DNA-based abundance estimates showed that N. europaea was slightly more abundant than N. winogradskyi, whereas protein-based abundance estimates indicated a much higher abundance of N. europaea. This highlights that single-method approaches need to be carefully interpreted in terms of overall cell abundance and metabolic activity.
Collapse
|
6
|
Verbeelen T, Leys N, Ganigué R, Mastroleo F. Development of Nitrogen Recycling Strategies for Bioregenerative Life Support Systems in Space. Front Microbiol 2021; 12:700810. [PMID: 34721316 PMCID: PMC8548772 DOI: 10.3389/fmicb.2021.700810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/30/2021] [Indexed: 12/03/2022] Open
Abstract
To enable long-distance space travel, the development of a highly efficient and robust system to recover nutrients from waste streams is imperative. The inability of the current physicochemical-based environmental control and life support system (ECLSS) on the ISS to produce food in situ and to recover water and oxygen at high enough efficiencies results in the need for frequent resupply missions from Earth. Therefore, alternative strategies like biologically-based technologies called bioregenerative life support systems (BLSSs) are in development. These systems aim to combine biological and physicochemical processes, which enable in situ water, oxygen, and food production (through the highly efficient recovery of minerals from waste streams). Hence, minimalizing the need for external consumables. One of the BLSS initiatives is the European Space Agency's (ESA) Micro-Ecological Life Support System Alternative (MELiSSA). It has been designed as a five-compartment bioengineered system able to produce fresh food and oxygen and to recycle water. As such, it could sustain the needs of a human crew for long-term space exploration missions. A prerequisite for the self-sufficient nature of MELiSSA is the highly efficient recovery of valuable minerals from waste streams. The produced nutrients can be used as a fertilizer for food production. In this review, we discuss the need to shift from the ECLSS to a BLSS, provide a summary of past and current BLSS programs and their unique approaches to nitrogen recovery and processing of urine waste streams. In addition, compartment III of the MELiSSA loop, which is responsible for nitrogen recovery, is reviewed in-depth. Finally, past, current, and future related ground and space demonstration and the space-related challenges for this technology are considered.
Collapse
Affiliation(s)
- Tom Verbeelen
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Ghent, Belgium
| | - Felice Mastroleo
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
7
|
Verseux C, Heinicke C, Ramalho TP, Determann J, Duckhorn M, Smagin M, Avila M. A Low-Pressure, N 2/CO 2 Atmosphere Is Suitable for Cyanobacterium-Based Life-Support Systems on Mars. Front Microbiol 2021; 12:611798. [PMID: 33664714 PMCID: PMC7920872 DOI: 10.3389/fmicb.2021.611798] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/07/2021] [Indexed: 11/17/2022] Open
Abstract
The leading space agencies aim for crewed missions to Mars in the coming decades. Among the associated challenges is the need to provide astronauts with life-support consumables and, for a Mars exploration program to be sustainable, most of those consumables should be generated on site. Research is being done to achieve this using cyanobacteria: fed from Mars's regolith and atmosphere, they would serve as a basis for biological life-support systems that rely on local materials. Efficiency will largely depend on cyanobacteria's behavior under artificial atmospheres: a compromise is needed between conditions that would be desirable from a purely engineering and logistical standpoint (by being close to conditions found on the Martian surface) and conditions that optimize cyanobacterial productivity. To help identify this compromise, we developed a low-pressure photobioreactor, dubbed Atmos, that can provide tightly regulated atmospheric conditions to nine cultivation chambers. We used it to study the effects of a 96% N2, 4% CO2 gas mixture at a total pressure of 100 hPa on Anabaena sp. PCC 7938. We showed that those atmospheric conditions (referred to as MDA-1) can support the vigorous autotrophic, diazotrophic growth of cyanobacteria. We found that MDA-1 did not prevent Anabaena sp. from using an analog of Martian regolith (MGS-1) as a nutrient source. Finally, we demonstrated that cyanobacterial biomass grown under MDA-1 could be used for feeding secondary consumers (here, the heterotrophic bacterium E. coli W). Taken as a whole, our results suggest that a mixture of gases extracted from the Martian atmosphere, brought to approximately one tenth of Earth's pressure at sea level, would be suitable for photobioreactor modules of cyanobacterium-based life-support systems. This finding could greatly enhance the viability of such systems on Mars.
Collapse
Affiliation(s)
- Cyprien Verseux
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Bremen, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Malavasi V, Soru S, Cao G. Extremophile Microalgae: the potential for biotechnological application. JOURNAL OF PHYCOLOGY 2020; 56:559-573. [PMID: 31917871 DOI: 10.1111/jpy.12965] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/26/2019] [Indexed: 05/18/2023]
Abstract
Microalgae are photosynthetic microorganisms that use sunlight as an energy source, and convert water, carbon dioxide, and inorganic salts into algal biomass. The isolation and selection of microalgae, which allow one to obtain large amounts of biomass and valuable compounds, is a prerequisite for their successful industrial production. This work provides an overview of extremophile algae, where their ability to grow under harsh conditions and the corresponding accumulation of metabolites are addressed. Emphasis is placed on the high-value products of some prominent algae. Moreover, the most recent applications of these microorganisms and their potential exploitation in the context of astrobiology are taken into account.
Collapse
Affiliation(s)
- Veronica Malavasi
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Santina Soru
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Giacomo Cao
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123, Cagliari, Italy
| |
Collapse
|
9
|
Paradiso R, Ceriello A, Pannico A, Sorrentino S, Palladino M, Giordano M, Fortezza R, De Pascale S. Design of a Module for Cultivation of Tuberous Plants in Microgravity: The ESA Project "Precursor of Food Production Unit" (PFPU). FRONTIERS IN PLANT SCIENCE 2020; 11:417. [PMID: 32499789 PMCID: PMC7242650 DOI: 10.3389/fpls.2020.00417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/23/2020] [Indexed: 05/24/2023]
Abstract
Plant cultivation systems for Bioregenerative Life-Support Systems in Space developed on Earth need to be tested in space, where reduced gravity alters the liquid and gas behavior both within the plant and between the plant and its surrounding environment, making the distribution of water and nutrients a critical issue. The ESA project "Precursor of Food Production Unit" (PFPU) aims to design a modular cultivation system for edible tuberous plants (such as potato and sweet potato) in microgravity, to be preliminary tested in ground conditions in the view of successive space application. Among the different modules of the PFPU demonstrator, the Root Module (RM) is the component physically hosting the plant and accommodating tubers and roots. This paper describes the step-by-step procedure adopted to realize the RM, including the design, the building, and the ground testing of its prototype. Specifically, the hydrological characterization of possible cultivation substrates, the set-up of the water distribution system, and the validation test of the assembled prototype in a tuber-to-tuber growing cycle of potato plants are described. Among six substrates tested, including three organic materials and three synthetic materials, cellulosic sponge was selected as the best one, based on the hydrological behavior in terms of air and water transport and water retention capacity. The water sensor WaterScout was successfully calibrated to monitor the water status in cellulosic sponge and to drive irrigation and fertigation management. The designed porous tubes-based distribution system, integrated with water sensors, was able to provide water or nutrient solution in a timely and uniform way in cellulosic sponge.
Collapse
Affiliation(s)
- Roberta Paradiso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Antonio Ceriello
- Satellite Systems and Operations - Navigation and Science, Organisation Unit, Telespazio S.p.A., Naples, Italy
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Salvatore Sorrentino
- Satellite Systems and Operations - Navigation and Science, Organisation Unit, Telespazio S.p.A., Naples, Italy
| | - Mario Palladino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Maria Giordano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Raimondo Fortezza
- Satellite Systems and Operations - Navigation and Science, Organisation Unit, Telespazio S.p.A., Naples, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Wangpraseurt D, You S, Azam F, Jacucci G, Gaidarenko O, Hildebrand M, Kühl M, Smith AG, Davey MP, Smith A, Deheyn DD, Chen S, Vignolini S. Bionic 3D printed corals. Nat Commun 2020; 11:1748. [PMID: 32273516 PMCID: PMC7145811 DOI: 10.1038/s41467-020-15486-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/10/2020] [Indexed: 01/03/2023] Open
Abstract
Corals have evolved as optimized photon augmentation systems, leading to space-efficient microalgal growth and outstanding photosynthetic quantum efficiencies. Light attenuation due to algal self-shading is a key limiting factor for the upscaling of microalgal cultivation. Coral-inspired light management systems could overcome this limitation and facilitate scalable bioenergy and bioproduct generation. Here, we develop 3D printed bionic corals capable of growing microalgae with high spatial cell densities of up to 109 cells mL−1. The hybrid photosynthetic biomaterials are produced with a 3D bioprinting platform which mimics morphological features of living coral tissue and the underlying skeleton with micron resolution, including their optical and mechanical properties. The programmable synthetic microenvironment thus allows for replicating both structural and functional traits of the coral-algal symbiosis. Our work defines a class of bionic materials that is capable of interacting with living organisms and can be exploited for applied coral reef research and photobioreactor design. Corals have evolved as finely tuned light collectors. Here, the authors report on the 3D printing of coral-inspired biomaterials, that mimic the coral-algal symbiosis; these bionic corals lead to dense microalgal growth and can find applications in algal biotechnology and applied coral science.
Collapse
Affiliation(s)
- Daniel Wangpraseurt
- Bioinspired Photonics Group, Department of Chemistry, University of Cambridge, Cambridge, UK. .,Scripps Institution of Oceanography, University of California San Diego, San Diego, USA. .,Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Shangting You
- Department of Nanoengineering, University of California San Diego, San Diego, CA, USA
| | - Farooq Azam
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA
| | - Gianni Jacucci
- Bioinspired Photonics Group, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Olga Gaidarenko
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA
| | - Mark Hildebrand
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Climate Change Cluster, University of Technology Sydney, Ultimo, Australia
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Matthew P Davey
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Alyssa Smith
- Bioinspired Photonics Group, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Dimitri D Deheyn
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA
| | - Shaochen Chen
- Department of Nanoengineering, University of California San Diego, San Diego, CA, USA.
| | - Silvia Vignolini
- Bioinspired Photonics Group, Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Ilgrande C, Defoirdt T, Vlaeminck SE, Boon N, Clauwaert P. Media Optimization, Strain Compatibility, and Low-Shear Modeled Microgravity Exposure of Synthetic Microbial Communities for Urine Nitrification in Regenerative Life-Support Systems. ASTROBIOLOGY 2019; 19:1353-1362. [PMID: 31657947 DOI: 10.1089/ast.2018.1981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Urine is a major waste product of human metabolism and contains essential macro- and micronutrients to produce edible microorganisms and crops. Its biological conversion into a stable form can be obtained through urea hydrolysis, subsequent nitrification, and organics removal, to recover a nitrate-enriched stream, free of oxygen demand. In this study, the utilization of a microbial community for urine nitrification was optimized with the focus for space application. To assess the role of selected parameters that can impact ureolysis in urine, the activity of six ureolytic heterotrophs (Acidovorax delafieldii, Comamonas testosteroni, Cupriavidus necator, Delftia acidovorans, Pseudomonas fluorescens, and Vibrio campbellii) was tested at different salinities, urea, and amino acid concentrations. The interaction of the ureolytic heterotrophs with a nitrifying consortium (Nitrosomonas europaea ATCC 19718 and Nitrobacter winogradskyi ATCC 25931) was also tested. Lastly, microgravity was simulated in a clinostat utilizing hardware for in-flight experiments with active microbial cultures. The results indicate salt inhibition of the ureolysis at 30 mS cm-1, while amino acid nitrogen inhibits ureolysis in a strain-dependent manner. The combination of the nitrifiers with C. necator and V. campbellii resulted in a complete halt of the urea hydrolysis process, while in the case of A. delafieldii incomplete nitrification was observed, and nitrite was not oxidized further to nitrate. Nitrate production was confirmed in all the other communities; however, the other heterotrophic strains most likely induced oxygen competition in the test setup, and nitrite accumulation was observed. Samples exposed to low-shear modeled microgravity through clinorotation behaved similarly to the static controls. Overall, nitrate production from urea was successfully demonstrated with synthetic microbial communities under terrestrial and simulated space gravity conditions, corroborating the application of this process in space.
Collapse
Affiliation(s)
- Chiara Ilgrande
- Center for Microbial Ecology and Technology, Ghent University, Gent, Belgium
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology, Ghent University, Gent, Belgium
| | - Siegfried E Vlaeminck
- Center for Microbial Ecology and Technology, Ghent University, Gent, Belgium
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerpen, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology, Ghent University, Gent, Belgium
| | - Peter Clauwaert
- Center for Microbial Ecology and Technology, Ghent University, Gent, Belgium
| |
Collapse
|
12
|
Ilgrande C, Mastroleo F, Christiaens MER, Lindeboom REF, Prat D, Van Hoey O, Ambrozova I, Coninx I, Heylen W, Pommerening-Roser A, Spieck E, Boon N, Vlaeminck SE, Leys N, Clauwaert P. Reactivation of Microbial Strains and Synthetic Communities After a Spaceflight to the International Space Station: Corroborating the Feasibility of Essential Conversions in the MELiSSA Loop. ASTROBIOLOGY 2019; 19:1167-1176. [PMID: 31161957 DOI: 10.1089/ast.2018.1973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To sustain human deep space exploration or extra-terrestrial settlements where no resupply from the Earth or other planets is possible, technologies for in situ food production, water, air, and waste recovery need to be developed. The Micro-Ecological Life Support System Alternative (MELiSSA) is such a Regenerative Life Support System (RLSS) and it builds on several bacterial bioprocesses. However, alterations in gravity, temperature, and radiation associated with the space environment can affect survival and functionality of the microorganisms. In this study, representative strains of different carbon and nitrogen metabolisms with application in the MELiSSA were selected for launch and Low Earth Orbit (LEO) exposure. An edible photoautotrophic strain (Arthrospira sp. PCC 8005), a photoheterotrophic strain (Rhodospirillum rubrum S1H), a ureolytic heterotrophic strain (Cupriavidus pinatubonensis 1245), and combinations of C. pinatubonensis 1245 and autotrophic ammonia and nitrite oxidizing strains (Nitrosomonas europaea ATCC19718, Nitrosomonas ureae Nm10, and Nitrobacter winogradskyi Nb255) were sent to the International Space Station (ISS) for 7 days. There, the samples were exposed to 2.8 mGy, a dose 140 times higher than on the Earth, and a temperature of 22°C ± 1°C. On return to the Earth, the cultures were reactivated and their growth and activity were compared with terrestrial controls stored under refrigerated (5°C ± 2°C) or room temperature (22°C ± 1°C and 21°C ± 0°C) conditions. Overall, no difference was observed between terrestrial and ISS samples. Most cultures presented lower cell viability after the test, regardless of the type of exposure, indicating a harsher effect of the storage and sample preparation than the spaceflight itself. Postmission analysis revealed the successful survival and proliferation of all cultures except for Arthrospira, which suffered from the premission depressurization test. These observations validate the possibility of launching, storing, and reactivating bacteria with essential functionalities for microbial bioprocesses in RLSS.
Collapse
Affiliation(s)
- Chiara Ilgrande
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| | - Felice Mastroleo
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | | | - Ralph E F Lindeboom
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
- Section Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
| | - Delphine Prat
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| | - Olivier Van Hoey
- Unit of Research in Dosimetric Applications, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Iva Ambrozova
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Academy of Sciences of the Czech Republic, Praha, Czech Republic
| | - Ilse Coninx
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Wietse Heylen
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | | | - Eva Spieck
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| | - Siegfried E Vlaeminck
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerpen, Belgium
| | - Natalie Leys
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Peter Clauwaert
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| |
Collapse
|
13
|
Olsson-Francis K, Ramkissoon NK, Price AB, Slade DJ, Macey MC, Pearson VK. The Study of Microbial Survival in Extraterrestrial Environments Using Low Earth Orbit and Ground-Based Experiments. J Microbiol Methods 2018. [DOI: 10.1016/bs.mim.2018.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Karouia F, Peyvan K, Pohorille A. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth. Biotechnol Adv 2017; 35:905-932. [PMID: 28433608 DOI: 10.1016/j.biotechadv.2017.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022]
Abstract
Space biotechnology is a nascent field aimed at applying tools of modern biology to advance our goals in space exploration. These advances rely on our ability to exploit in situ high throughput techniques for amplification and sequencing DNA, and measuring levels of RNA transcripts, proteins and metabolites in a cell. These techniques, collectively known as "omics" techniques have already revolutionized terrestrial biology. A number of on-going efforts are aimed at developing instruments to carry out "omics" research in space, in particular on board the International Space Station and small satellites. For space applications these instruments require substantial and creative reengineering that includes automation, miniaturization and ensuring that the device is resistant to conditions in space and works independently of the direction of the gravity vector. Different paths taken to meet these requirements for different "omics" instruments are the subjects of this review. The advantages and disadvantages of these instruments and technological solutions and their level of readiness for deployment in space are discussed. Considering that effects of space environments on terrestrial organisms appear to be global, it is argued that high throughput instruments are essential to advance (1) biomedical and physiological studies to control and reduce space-related stressors on living systems, (2) application of biology to life support and in situ resource utilization, (3) planetary protection, and (4) basic research about the limits on life in space. It is also argued that carrying out measurements in situ provides considerable advantages over the traditional space biology paradigm that relies on post-flight data analysis.
Collapse
Affiliation(s)
- Fathi Karouia
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA; NASA Ames Research Center, Flight Systems Implementation Branch, Moffett Field, CA 94035, USA.
| | | | - Andrew Pohorille
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA.
| |
Collapse
|
15
|
Verseux CN, Paulino-Lima IG, Baqué M, Billi D, Rothschild LJ. Synthetic Biology for Space Exploration: Promises and Societal Implications. ETHICS OF SCIENCE AND TECHNOLOGY ASSESSMENT 2016. [DOI: 10.1007/978-3-319-21088-9_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Murukesan G, Leino H, Mäenpää P, Ståhle K, Raksajit W, Lehto HJ, Allahverdiyeva-Rinne Y, Lehto K. Pressurized Martian-Like Pure CO2 Atmosphere Supports Strong Growth of Cyanobacteria, and Causes Significant Changes in their Metabolism. ORIGINS LIFE EVOL B 2015; 46:119-31. [PMID: 26294358 PMCID: PMC4679102 DOI: 10.1007/s11084-015-9458-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/22/2015] [Indexed: 11/30/2022]
Abstract
Surviving of crews during future missions to Mars will depend on reliable and adequate supplies of essential life support materials, i.e. oxygen, food, clean water, and fuel. The most economical and sustainable (and in long term, the only viable) way to provide these supplies on Martian bases is via bio-regenerative systems, by using local resources to drive oxygenic photosynthesis. Selected cyanobacteria, grown in adequately protective containment could serve as pioneer species to produce life sustaining substrates for higher organisms. The very high (95.3 %) CO2 content in Martian atmosphere would provide an abundant carbon source for photo-assimilation, but nitrogen would be a strongly limiting substrate for bio-assimilation in this environment, and would need to be supplemented by nitrogen fertilizing. The very high supply of carbon, with rate-limiting supply of nitrogen strongly affects the growth and the metabolic pathways of the photosynthetic organisms. Here we show that modified, Martian-like atmospheric composition (nearly 100 % CO2) under various low pressure conditions (starting from 50 mbar to maintain liquid water, up to 200 mbars) supports strong cellular growth. Under high CO2 / low N2 ratio the filamentous cyanobacteria produce significant amount of H2 during light due to differentiation of high amount of heterocysts.
Collapse
Affiliation(s)
- Gayathri Murukesan
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Hannu Leino
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Pirkko Mäenpää
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Kurt Ståhle
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Wuttinun Raksajit
- Centre of Integrated Bioscience for Animal Health and Alternative Energy, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Harry J Lehto
- Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Piikkiö, Finland
| | | | - Kirsi Lehto
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
17
|
Janssen PJD, Lambreva MD, Plumeré N, Bartolucci C, Antonacci A, Buonasera K, Frese RN, Scognamiglio V, Rea G. Photosynthesis at the forefront of a sustainable life. Front Chem 2014; 2:36. [PMID: 24971306 PMCID: PMC4054791 DOI: 10.3389/fchem.2014.00036] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/25/2014] [Indexed: 11/13/2022] Open
Abstract
The development of a sustainable bio-based economy has drawn much attention in recent years, and research to find smart solutions to the many inherent challenges has intensified. In nature, perhaps the best example of an authentic sustainable system is oxygenic photosynthesis. The biochemistry of this intricate process is empowered by solar radiation influx and performed by hierarchically organized complexes composed by photoreceptors, inorganic catalysts, and enzymes which define specific niches for optimizing light-to-energy conversion. The success of this process relies on its capability to exploit the almost inexhaustible reservoirs of sunlight, water, and carbon dioxide to transform photonic energy into chemical energy such as stored in adenosine triphosphate. Oxygenic photosynthesis is responsible for most of the oxygen, fossil fuels, and biomass on our planet. So, even after a few billion years of evolution, this process unceasingly supports life on earth, and probably soon also in outer-space, and inspires the development of enabling technologies for a sustainable global economy and ecosystem. The following review covers some of the major milestones reached in photosynthesis research, each reflecting lasting routes of innovation in agriculture, environmental protection, and clean energy production.
Collapse
Affiliation(s)
- Paul J. D. Janssen
- Molecular and Cellular Biology - Unit of Microbiology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre SCK•CENMol, Belgium
| | - Maya D. Lambreva
- Institute of Crystallography, National Research Council of ItalyRome, Italy
| | - Nicolas Plumeré
- Center for Electrochemical Sciences-CES, Ruhr-Universität BochumBochum, Germany
| | - Cecilia Bartolucci
- Institute of Crystallography, National Research Council of ItalyRome, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council of ItalyRome, Italy
| | - Katia Buonasera
- Institute of Crystallography, National Research Council of ItalyRome, Italy
| | - Raoul N. Frese
- Division of Physics and Astronomy, Department of Biophysics, VU University AmsterdamAmsterdam, Netherlands
| | | | - Giuseppina Rea
- Institute of Crystallography, National Research Council of ItalyRome, Italy
| |
Collapse
|
18
|
Billi D, Baqué M, Smith HD, McKay CP. Cyanobacteria from Extreme Deserts to Space. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aim.2013.36a010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Abrevaya XC, Paulino-Lima IG, Galante D, Rodrigues F, Mauas PJD, Cortón E, Lage CDAS. Comparative survival analysis of Deinococcus radiodurans and the haloarchaea Natrialba magadii and Haloferax volcanii exposed to vacuum ultraviolet irradiation. ASTROBIOLOGY 2011; 11:1034-1040. [PMID: 22165956 DOI: 10.1089/ast.2011.0607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The haloarchaea Natrialba magadii and Haloferax volcanii, as well as the radiation-resistant bacterium Deinococcus radiodurans, were exposed to vacuum UV (VUV) radiation at the Brazilian Synchrotron Light Laboratory. Cell monolayers (containing 10(5) to 10(6) cells per sample) were prepared over polycarbonate filters and irradiated under high vacuum (10(-5) Pa) with polychromatic synchrotron radiation. N. magadii was remarkably resistant to high vacuum with a survival fraction of (3.77±0.76)×10(-2), which was larger than that of D. radiodurans (1.13±0.23)×10(-2). The survival fraction of the haloarchaea H. volcanii, of (3.60±1.80)×10(-4), was much smaller. Radiation resistance profiles were similar between the haloarchaea and D. radiodurans for fluences up to 150 J m(-2). For fluences larger than 150 J m(-2), there was a significant decrease in the survival of haloarchaea, and in particular H. volcanii did not survive. Survival for D. radiodurans was 1% after exposure to the higher VUV fluence (1350 J m(-2)), while N. magadii had a survival lower than 0.1%. Such survival fractions are discussed regarding the possibility of interplanetary transfer of viable microorganisms and the possible existence of microbial life in extraterrestrial salty environments such as the planet Mars and Jupiter's moon Europa. This is the first work to report survival of haloarchaea under simulated interplanetary conditions.
Collapse
Affiliation(s)
- Ximena C Abrevaya
- Instituto de Astronomía y Física del Espacio (IAFE), Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
20
|
Survival of akinetes (resting-state cells of cyanobacteria) in low earth orbit and simulated extraterrestrial conditions. ORIGINS LIFE EVOL B 2011; 39:565-79. [PMID: 19387863 DOI: 10.1007/s11084-009-9167-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
Abstract
Cyanobacteria are photosynthetic organisms that have been considered for space applications, such as oxygen production in bioregenerative life support systems, and can be used as a model organism for understanding microbial survival in space. Akinetes are resting-state cells of cyanobacteria that are produced by certain genera of heterocystous cyanobacteria to survive extreme environmental conditions. Although they are similar in nature to endospores, there have been no investigations into the survival of akinetes in extraterrestrial environments. The aim of this work was to examine the survival of akinetes from Anabaena cylindrica in simulated extraterrestrial conditions and in Low Earth Orbit (LEO). Akinetes were dried onto limestone rocks and sent into LEO for 10 days on the ESA Biopan VI. In ground-based experiments, the rocks were exposed to periods of desiccation, vacuum (0.7×10(-3) kPa), temperature extremes (-80 to 80°C), Mars conditions (-27°C, 0.8 kPa, CO(2)) and UV radiation (325-400 nm). A proportion of the akinete population was able to survive a period of 10 days in LEO and 28 days in Mars simulated conditions, when the rocks were not subjected to UV radiation. Furthermore, the akinetes were able to survive 28 days of exposure to desiccation and low temperature with high viability remaining. Yet long periods of vacuum and high temperature were lethal to the akinetes. This work shows that akinetes are extreme-tolerating states of cyanobacteria that have a practical use in space applications and yield new insight into the survival of microbial resting-state cells in space conditions.
Collapse
|
21
|
Cockell CS. Geomicrobiology beyond Earth: microbe-mineral interactions in space exploration and settlement. Trends Microbiol 2010; 18:308-14. [PMID: 20381355 DOI: 10.1016/j.tim.2010.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 03/04/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022]
Abstract
Geomicrobiology investigates the interactions of microorganisms with geological substrates, and this branch of microbiology has enormous potential in the exploration and settlement of space. Microorganisms can be used to extract useful elements from extraterrestrial materials for industrial processes or for use as nutrients in life support systems. In addition, microorganisms could be used to create soil from lunar and Martian rocks. Furthermore, understanding the interactions of microorganisms with rocks is essential for identifying mineral biomarkers to be used in the search for life on other planetary bodies. Increasing space exploration activities make geomicrobiology an important applied science beyond Earth.
Collapse
|
22
|
Toxicogenomic response of Rhodospirillum rubrum S1H to the micropollutant triclosan. Appl Environ Microbiol 2010; 76:3503-13. [PMID: 20363786 DOI: 10.1128/aem.01254-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the framework of the Micro-Ecological Life Support System Alternative (MELiSSA) project, a pilot study was performed to identify the effects of triclosan on the MELiSSA carbon-mineralizing microorganism Rhodospirillum rubrum S1H. Triclosan is a biocide that is commonly found in human excrement and is considered an emerging pollutant in wastewater and the environment. Chronic exposure to MELiSSA-relevant concentrations (> or =25 microg liter(-1)) of triclosan resulted in a significant extension of the lag phase of this organism but hardly affected the growth rate. Analytical determinations gave no indication of triclosan biodegradation during the growth experiment, and flow cytometric viability analyses revealed that triclosan is bacteriostatic and only slightly toxic to R. rubrum S1H. Using microarray analyses, the genetic mechanisms supporting the reversibility of triclosan-induced inhibition were scrutinized. An extremely triclosan-responsive cluster of four small adjacent genes was identified, for which there was up to 34-fold induction with 25 microg liter(-1) triclosan. These four genes, for which the designation microf (micropollutant-upregulated factor) is proposed, appear to be unique to R. rubrum and are shown here for the first time to be involved in the response to stress. Moreover, numerous other systems that are associated with the proton motive force were shown to be responsive to triclosan, but they were never as highly upregulated as the microf genes. In response to triclosan, R. rubrum S1H induced transcription of the phage shock protein operon (pspABC), numerous efflux systems, cell envelope consolidation mechanisms, the oxidative stress response, beta-oxidation, and carbonic anhydrase, while there was downregulation of bacterial conjugation and carboxysome synthesis genes. The microf genes and three efflux-related genes showed the most potential to be low-dose biomarkers.
Collapse
|
23
|
Isolation of novel extreme-tolerant cyanobacteria from a rock-dwelling microbial community by using exposure to low Earth orbit. Appl Environ Microbiol 2010; 76:2115-21. [PMID: 20154120 DOI: 10.1128/aem.02547-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many cyanobacteria are known to tolerate environmental extremes. Motivated by an interest in selecting cyanobacteria for applications in space, we launched rocks from a limestone cliff in Beer, Devon, United Kingdom, containing an epilithic and endolithic rock-dwelling community of cyanobacteria into low Earth orbit (LEO) at a height of approximately 300 kilometers. The community was exposed for 10 days to isolate cyanobacteria that can survive exposure to the extreme radiation and desiccating conditions associated with space. Culture-independent (16S rRNA) and culture-dependent methods showed that the cyanobacterial community was composed of Pleurocapsales, Oscillatoriales, and Chroococcales. A single cyanobacterium, a previously uncharacterized extremophile, was isolated after exposure to LEO. We were able to isolate the cyanobacterium from the limestone cliff after exposing the rock-dwelling community to desiccation and vacuum (0.7 x 10(-3) kPa) in the laboratory. The ability of the organism to survive the conditions in space may be linked to the formation of dense colonies. These experiments show how extreme environmental conditions, including space, can be used to select for novel microorganisms. Furthermore, it improves our knowledge of environmental tolerances of extremophilic rock-dwelling cyanobacteria.
Collapse
|
24
|
Olsson-Francis K, Cockell CS. Experimental methods for studying microbial survival in extraterrestrial environments. J Microbiol Methods 2009; 80:1-13. [PMID: 19854226 DOI: 10.1016/j.mimet.2009.10.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/05/2009] [Accepted: 10/07/2009] [Indexed: 11/24/2022]
Abstract
Microorganisms can be used as model systems for studying biological responses to extraterrestrial conditions; however, the methods for studying their response are extremely challenging. Since the first high altitude microbiological experiment in 1935 a large number of facilities have been developed for short- and long-term microbial exposure experiments. Examples are the BIOPAN facility, used for short-term exposure, and the EXPOSE facility aboard the International Space Station, used for long-term exposure. Furthermore, simulation facilities have been developed to conduct microbiological experiments in the laboratory environment. A large number of microorganisms have been used for exposure experiments; these include pure cultures and microbial communities. Analyses of these experiments have involved both culture-dependent and independent methods. This review highlights and discusses the facilities available for microbiology experiments, both in space and in simulation environments. A description of the microorganisms and the techniques used to analyse survival is included. Finally we discuss the implications of microbiological studies for future missions and for space applications.
Collapse
Affiliation(s)
- Karen Olsson-Francis
- Centre for Earth, Planetary, Space and Astronomical Research, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | | |
Collapse
|
25
|
Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight. ISME JOURNAL 2009; 3:1402-19. [DOI: 10.1038/ismej.2009.74] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
The response of Cupriavidus metallidurans CH34 to spaceflight in the international space station. Antonie van Leeuwenhoek 2009; 96:227-45. [DOI: 10.1007/s10482-009-9360-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 06/17/2009] [Indexed: 01/30/2023]
|
27
|
Mastroleo F, Leroy B, Van Houdt R, s’ Heeren C, Mergeay M, Hendrickx L, Wattiez R. Shotgun Proteome Analysis of Rhodospirillum rubrum S1H: Integrating Data from Gel-Free and Gel-Based Peptides Fractionation Methods. J Proteome Res 2009; 8:2530-41. [DOI: 10.1021/pr900007d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Felice Mastroleo
- Department of Proteomics and Protein Biochemistry, University of Mons, Mons, Belgium, and Expert group Molecular and Cellular Biology, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Baptiste Leroy
- Department of Proteomics and Protein Biochemistry, University of Mons, Mons, Belgium, and Expert group Molecular and Cellular Biology, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Rob Van Houdt
- Department of Proteomics and Protein Biochemistry, University of Mons, Mons, Belgium, and Expert group Molecular and Cellular Biology, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Catherine s’ Heeren
- Department of Proteomics and Protein Biochemistry, University of Mons, Mons, Belgium, and Expert group Molecular and Cellular Biology, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Max Mergeay
- Department of Proteomics and Protein Biochemistry, University of Mons, Mons, Belgium, and Expert group Molecular and Cellular Biology, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Larissa Hendrickx
- Department of Proteomics and Protein Biochemistry, University of Mons, Mons, Belgium, and Expert group Molecular and Cellular Biology, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Protein Biochemistry, University of Mons, Mons, Belgium, and Expert group Molecular and Cellular Biology, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| |
Collapse
|