1
|
Mangoma N, Zhou N, Ncube T. Metagenomic insights into the microbial community of the Buhera soda pans, Zimbabwe. BMC Microbiol 2024; 24:510. [PMID: 39614167 DOI: 10.1186/s12866-024-03655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Soda pans are unique, natural aquatic environments characterised by elevated salinity and alkalinity, creating a distinctive and often extreme geochemistry. The microbiomes of soda pans are unique, with extremophiles such as halophiles, alkaliphiles and haloalkaliphiles being important. Despite being dominated by mostly unculturable inhabitants, soda pans hold immense biotechnological potential. The application of modern "omics-based" techniques helps us better understand the ecology and true extend of the biotechnological potential of soda pan microbiomes. In this study, we used a shotgun metagenomic approach to determine the microbial diversity and functional profile of previously unexplored soda pans located in Buhera, Eastern Zimbabwe. A combination of titrimetry and inductively coupled plasma optical emission spectroscopy (ICP‒OES) was used to perform physico-chemical analysis of the soda pan water. RESULTS Physicochemical analysis revealed that the Buhera soda pans are highly alkaline, with a pH range of 8.74 to 11.03, moderately saline (2.94 - 7.55 g/L), and have high carbonate (3625 mg/L) and bicarbonate ion (1325 mg/L) alkalinity. High levels of sulphate, phosphate, chloride and fluoride ions were detected. Metagenomic analysis revealed that domain Bacteria dominated the soda pan microbial community, with Pseudomonadota and Bacillota being the dominant phyla. Vibrio was shown to be the predominant genus, followed by Clostridium, Candidatus Brevefilum, Acetoanaerobium, Thioalkalivibrio and Marinilactibacillus. Archaea were also detected, albeit at a low prevalence of 1%. Functional profiling revealed that the Buhera soda pan microbiome is functionally diverse, has hydrolytic-enzyme production potential and is capable of supporting a variety of geochemical cycles. CONCLUSIONS The results of this pioneering study showed that despite their extreme alkalinity and moderate salinity, the Buhera soda pans harbour a taxonomically and functionally diverse microbiome dominated by bacteria. Future work will aim towards establishing the full extent of the soda pan's biotechnological potential, with a particular emphasis on potential enzyme production.
Collapse
Affiliation(s)
- Ngonidzashe Mangoma
- Department of Applied Biology and Biochemistry, Faculty of Applied Science, National University of Science and Technology, Bulawayo, Zimbabwe.
| | - Nerve Zhou
- Biological Sciences and Biotechnology Department, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Thembekile Ncube
- Research and Internationalization Office, National University of Science and Technology, Bulawayo, Zimbabwe
| |
Collapse
|
2
|
Ren M, Hu A, Zhang L, Yao X, Zhao Z, Kimirei IA, Wang J. Acidic proteomes are linked to microbial alkaline preference in African lakes. WATER RESEARCH 2024; 266:122393. [PMID: 39243463 DOI: 10.1016/j.watres.2024.122393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Microbial amino acid composition (AA) reflects adaptive strategies of cellular and molecular regulations such as a high proportion of acidic AAs, including glutamic and aspartic acids in alkaliphiles. It remains understudied how microbial AA content is linked to their pH adaptation especially in natural environments. Here we examined prokaryotic communities and their AA composition of genes with metagenomics for 39 water and sediments of East African lakes along a gradient of pH spanning from 7.2 to 10.1. We found that Shannon diversity declined with the increasing pH and that species abundance were either positively or negatively associated with pH, indicating their distinct habitat preference in lakes. Microbial communities showed higher acidic proteomes in alkaline than neutral lakes. Species acidic proteomes were also positively correlated with their pH preference, which was consistent across major bacterial lineages. These results suggest selective pressure associated with high pH likely shape microbial amino acid composition both at the species and community levels. Comparative genome analyses further revealed that alkaliphilic microbes contained more functional genes with higher acidic AAs when compared to those in neutral conditions. These traits included genes encoding diverse classes of cation transmembrane transporters, antiporters, and compatible solute transporters, which are involved in cytoplasmic pH homeostasis and osmotic stress defense under high pH conditions. Our results provide the field evidence for the strong relationship between prokaryotic AA composition and their habitat preference and highlight amino acid optimization as strategies for environmental adaptation.
Collapse
Affiliation(s)
- Minglei Ren
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ang Hu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lu Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaolong Yao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhonghua Zhao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ismael Aaron Kimirei
- Tanzania Fisheries Research Institute-Headquarter, Dar Es Salaam P.O. Box 9750, Tanzania
| | - Jianjun Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
3
|
Caro-Astorga J, Meyerowitz JT, Stork DA, Nattermann U, Piszkiewicz S, Vimercati L, Schwendner P, Hocher A, Cockell C, DeBenedictis E. Polyextremophile engineering: a review of organisms that push the limits of life. Front Microbiol 2024; 15:1341701. [PMID: 38903795 PMCID: PMC11188471 DOI: 10.3389/fmicb.2024.1341701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Nature exhibits an enormous diversity of organisms that thrive in extreme environments. From snow algae that reproduce at sub-zero temperatures to radiotrophic fungi that thrive in nuclear radiation at Chernobyl, extreme organisms raise many questions about the limits of life. Is there any environment where life could not "find a way"? Although many individual extremophilic organisms have been identified and studied, there remain outstanding questions about the limits of life and the extent to which extreme properties can be enhanced, combined or transferred to new organisms. In this review, we compile the current knowledge on the bioengineering of extremophile microbes. We summarize what is known about the basic mechanisms of extreme adaptations, compile synthetic biology's efforts to engineer extremophile organisms beyond what is found in nature, and highlight which adaptations can be combined. The basic science of extremophiles can be applied to engineered organisms tailored to specific biomanufacturing needs, such as growth in high temperatures or in the presence of unusual solvents.
Collapse
Affiliation(s)
| | | | - Devon A. Stork
- Pioneer Research Laboratories, San Francisco, CA, United States
| | - Una Nattermann
- Pioneer Research Laboratories, San Francisco, CA, United States
| | | | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | | | - Antoine Hocher
- London Institute of Medical Sciences, London, United Kingdom
| | - Charles Cockell
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Erika DeBenedictis
- The Francis Crick Institute, London, United Kingdom
- Pioneer Research Laboratories, San Francisco, CA, United States
| |
Collapse
|
4
|
Yadav P, Das J, Sundharam SS, Krishnamurthi S. Analysis of Culturable Bacterial Diversity of Pangong Tso Lake via a 16S rRNA Tag Sequencing Approach. Microorganisms 2024; 12:397. [PMID: 38399801 PMCID: PMC10892101 DOI: 10.3390/microorganisms12020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 02/25/2024] Open
Abstract
The Pangong Tso lake is a high-altitude freshwater habitat wherein the resident microbes experience unique selective pressures, i.e., high radiation, low nutrient content, desiccation, and temperature extremes. Our study attempts to analyze the diversity of culturable bacteria by applying a high-throughput amplicon sequencing approach based on long read technology to determine the spectrum of bacterial diversity supported by axenic media. The phyla Pseudomonadota, Bacteriodetes, and Actinomycetota were retrieved as the predominant taxa in both water and sediment samples. The genera Hydrogenophaga and Rheinheimera, Pseudomonas, Loktanella, Marinomonas, and Flavobacterium were abundantly present in the sediment and water samples, respectively. Low nutrient conditions supported the growth of taxa within the phyla Bacteriodetes, Actinomycetota, and Cyanobacteria and were biased towards the selection of Pseudomonas, Hydrogenophaga, Bacillus, and Enterococcus spp. Our study recommends that media formulations can be finalized after analyzing culturable diversity through a high-throughput sequencing effort to retrieve maximum species diversity targeting novel/relevant taxa.
Collapse
Affiliation(s)
- Pooja Yadav
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh 160036, India; (P.Y.); (J.D.); (S.S.S.)
| | - Joyasree Das
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh 160036, India; (P.Y.); (J.D.); (S.S.S.)
| | - Shiva S. Sundharam
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh 160036, India; (P.Y.); (J.D.); (S.S.S.)
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh 160036, India; (P.Y.); (J.D.); (S.S.S.)
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| |
Collapse
|
5
|
Khomyakova MA, Merkel AY, Slobodkin AI, Sorokin DY. Phenotypic and genomic characterization of the first alkaliphilic aceticlastic methanogens and proposal of a novel genus Methanocrinis gen.nov. within the family Methanotrichaceae. Front Microbiol 2023; 14:1233691. [PMID: 37886072 PMCID: PMC10598746 DOI: 10.3389/fmicb.2023.1233691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Highly purified cultures of alkaliphilic aceticlastic methanogens were collected for the first time using methanogenic enrichments with acetate from a soda lake and a terrestrial mud volcano. The cells of two strains were non-motile rods forming filaments. The mud volcano strain M04Ac was alkalitolerant, with the pH range for growth from 7.5 to 10.0 (optimum at 9.0), while the soda lake strain Mx was an obligate alkaliphile growing in the pH range 7.7-10.2 (optimum 9.3-9.5) in the presence of optimally 0.2-0.3 M total Na+. Genomes of both strains encoded all enzymes required for aceticlastic methanogenesis and different mechanisms of (halo)alkaline adaptations, including ectoine biosynthesis, which is the first evidence for the formation of this osmoprotectant in archaea. According to 16S rRNA gene phylogeny, the strains possessed 98.3-98.9% sequence identity and belonged to the obligately aceticlastic genus Methanothrix with M. harundinaceae as the most closely related species. However, a more advanced phylogenomic reconstruction based on 122 conserved single-copy archaeal protein-coding marker genes clearly indicated a polyphyletic origin of the species included in the genus Methanothrix. We propose to reclassify Methanothrix harrundinacea (type strain 8AcT) into a new genus, Methanocrinis gen. nov., with the type species Methanocrinis harrundinaceus comb. nov. We also propose under SeqCode the complete genome sequences of strain MxTs (GCA_029167045.1) and strain M04AcTs (GCA_029167205.1) as nomenclatural types of Methanocrinis natronophilus sp. nov. and Methanocrinis alkalitolerans sp. nov., respectively, which represent other species of the novel genus. This work demonstrates that the low energy aceticlastic methanogenesis may function at extreme conditions present in (halo)alkaline habitats.
Collapse
Affiliation(s)
- Maria A. Khomyakova
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
| | - Alexander Y. Merkel
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
| | - Alexander I. Slobodkin
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
| | - Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
6
|
Korponai K, Szuróczki S, Márton Z, Szabó A, Morais PV, Proença DN, Tóth E, Boros E, Márialigeti K, Felföldi T. Habitat distribution of the genus Belliella in continental waters and the description of Belliella alkalica sp. nov., Belliella calami sp. nov. and Belliella filtrata sp. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 37326610 DOI: 10.1099/ijsem.0.005928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
The genus Belliella belongs to the family Cyclobacteriaceae (order Cytophagales, phylum Bacteroidota) and harbours aerobic chemoheterotrophic bacteria. Members of this genus were isolated from various aquatic habitats, and our analysis based on global amplicon sequencing data revealed that their relative abundance can reach up to 5-10 % of the bacterioplankton in soda lakes and pans. Although a remarkable fraction of the most frequent genotypes that we identified from continental aquatic habitats is still uncultured, five new alkaliphilic Belliella strains were characterized in detail in this study, which were isolated from three different soda lakes and pans of the Carpathian Basin (Hungary). Cells of all strains were Gram-stain-negative, obligate aerobic, rod-shaped, non-motile and non-spore-forming. The isolates were oxidase- and catalase-positive, red-coloured, but did not contain flexirubin-type pigments; they formed bright red colonies that were circular, smooth and convex. Their major isoprenoid quinone was MK-7 and the predominant fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 containing C16 : 1 ω6c and/or C16 : 1 ω7c. The polar lipid profiles contained phosphatidylethanolamine, an unidentified aminophospholipid, an unidentified glycolipid, and several unidentified lipids and aminolipids. Based on whole-genome sequences, the DNA G+C content was 37.0, 37.1 and 37.8 mol % for strains R4-6T, DMA-N-10aT and U6F3T, respectively. The distinction of three new species was confirmed by in silico genomic comparison. Orthologous average nucleotide identity (<85.4 %) and digital DNA-DNA hybridization values (<38.9 %) supported phenotypic, chemotaxonomic and 16S rRNA gene sequence data and, therefore, the following three novel species are proposed: Belliella alkalica sp. nov. (represented by strains R4-6T=DSM 111903T=JCM 34281T=UCCCB122T and S4-10), Belliella calami sp. nov. (DMA-N-10aT=DSM 107340T=JCM 34280T=UCCCB121T) and Belliella filtrata sp. nov. (U6F3T=DSM 111904T=JCM 34282T=UCCCB123T and U6F1). Emended descriptions of species Belliella aquatica, Belliella baltica, Belliella buryatensis, Belliella kenyensis and Belliella pelovolcani are also presented.
Collapse
Affiliation(s)
- Kristóf Korponai
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
- Agricultural Institute, Centre for Agricultural Research, Brunszvik utca 2, 2462 Martonvásár, Hungary
| | - Sára Szuróczki
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Zsuzsanna Márton
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113 Budapest, Hungary
| | - Attila Szabó
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113 Budapest, Hungary
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms Vag 9, 750 07 Uppsala, Sweden
| | - Paula V Morais
- Department of Life Sciences, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Diogo Neves Proença
- Department of Life Sciences, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Erika Tóth
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Emil Boros
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113 Budapest, Hungary
| | - Károly Márialigeti
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113 Budapest, Hungary
| |
Collapse
|
7
|
Isolation and Genomics of Futiania mangrovii gen. nov., sp. nov., a Rare and Metabolically Versatile Member in the Class Alphaproteobacteria. Microbiol Spectr 2023; 11:e0411022. [PMID: 36541777 PMCID: PMC9927469 DOI: 10.1128/spectrum.04110-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mangrove microorganisms are a major part of the coastal ecosystem and are directly associated with nutrient cycling. Despite their ecological significance, the collection of culturable mangrove microbes is limited due to difficulties in isolation and cultivation. Here, we report the isolation and genome sequence of strain FT118T, the first cultured representative of a previously uncultivated order UBA8317 within Alphaproteobacteria, based on the combined results of 16S rRNA gene similarity, phylogenomic, and average amino acid identity analyses. We propose Futianiales ord. nov. and Futianiaceae fam. nov. with Futiania as the type genus, and FT118T represents the type species with the name Futiania mangrovii gen. nov, sp. nov. The 16S rRNA gene sequence comparison reveals that this novel order is a rare member but has a ubiquitous distribution across various habitats worldwide, which is corroborated by the experimental confirmation that this isolate can physiologically adapt to a wide range of oxygen levels, temperatures, pH and salinity levels. Biochemical characterization, genomic annotation, and metatranscriptomic analysis of FT118T demonstrate that it is metabolically versatile and active in situ. Genomic analysis reveals adaptive features of Futianiales to fluctuating mangrove environments, including the presence of high- and low-affinity terminal oxidases, N-type ATPase, and the genomic capability of producing various compatible solutes and polyhydroxybutyrate, which possibly allow for the persistence of this novel order across various habitats. Collectively, these results expand the current culture collection of mangrove microorganisms, providing genomic insights of how this novel taxon adapts to fluctuating environments and the culture reference to unravel possible microbe-environment interactions. IMPORTANCE The rare biosphere constitutes an essential part of the microbial community and may drive nutrient cycling and other geochemical processes. However, the difficulty in microbial isolation and cultivation has hampered our understanding of the physiology and ecology of uncultured rare lineages. In this study, we successfully isolated a novel alphaproteobacterium, designated as FT118T, and performed a combination of phenotypic, phylogenetic, and phylogenomic analyses, confirming that this isolate represents the first cultured member of a previously uncultivated order UBA8317 within Alphaproteobacteria. It is a rare species with a ubiquitous distribution across different habitats. Genomic and metatranscriptomic analyses demonstrate that it is metabolically versatile and active in situ, suggesting its potential role in nutrient cycling despite being scarce. This work not only expands the current phylogeny of isolated Alphaproteobacteria but also provides genomic and culture reference to unravel microbial adaptation strategies in mangrove sediments and possible microbe-environment interactions.
Collapse
|
8
|
Abstract
Members of candidate Asgardarchaeota superphylum appear to share numerous eukaryotic-like attributes thus being broadly explored for their relevance to eukaryogenesis. On the contrast, the ecological roles of Asgard archaea remains understudied. Asgard archaea have been frequently associated to low-oxygen aquatic sedimentary environments worldwide spanning a broad but not extreme salinity range. To date, the available information on diversity and potential biogeochemical roles of Asgardarchaeota mostly sourced from marine habitats and to a much lesser extend from true saline environments (i.e., > 3% w/v total salinity). Here, we provide an overview on diversity and ecological implications of Asgard archaea distributed across saline environments and briefly explore their metagenome-resolved potential for osmoadaptation. Loki-, Thor- and Heimdallarchaeota are the dominant Asgard clades in saline habitats where they might employ anaerobic/microaerophilic organic matter degradation and autotrophic carbon fixation. Homologs of primary solute uptake ABC transporters seemingly prevail in Thorarchaeota, whereas those putatively involved in trehalose and ectoine biosynthesis were mostly inferred in Lokiarchaeota. We speculate that Asgardarchaeota might adopt compatible solute-accumulating ('salt-out') strategy as response to salt stress. Our current understanding on the distribution, ecology and salt-adaptive strategies of Asgardarchaeota in saline environments are, however, limited by insufficient sampling and incompleteness of the available metagenome-assembled genomes. Extensive sampling combined with 'omics'- and cultivation-based approaches seem, therefore, crucial to gain deeper knowledge on this particularly intriguing archaeal lineage.
Collapse
|
9
|
Liu J, Zhang X, Cao H, Guo L, Zhao B, Zhang X, Wang Y, Wang H. Alteribacter keqinensis sp. nov., a moderately halophilic bacterium isolated from a soda lake. Int J Syst Evol Microbiol 2022; 72. [PMID: 35502996 DOI: 10.1099/ijsem.0.005351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, aerobic, endospore-forming and rod-shaped bacterium (KQ-3T), which grew at 10-45 °C (optimum 35 °C), pH 8.0-10.5 (optimum pH 9.0) and in the presence of 0-16 % (w/v) NaCl (optimum 3.0 %), was isolated from a soda lake and identified as representing a novel species using a polyphasic taxonomic approach. Strain KQ-3T was catalase-positive, oxidase-negative and non-motile. Phylogenetic analysis based on 16S rRNA gene sequence affiliated KQ-3T to the genus Alteribacter and showed the highest similarities to Alteribacter natronophilus M30T (97.90 %), Alteribacter aurantiacus K1-5T (97.84 %) and Alteribacter populi FJAT-45347T (97.22 %). Digital DNA-DNA hybridization and average nucleotide identity analyses revealed that KQ-3T displayed 21.4 and 72.81% genomic DNA relatedness with the most closely related strain, A. natronophilus M30T, respectively. KQ-3T contained all of the conserved signature indels that are specific for members of the genus Alteribacter. The DNA G+C content was 45.03 mol%. The cell-wall peptidoglycan contained meso-diaminopimelic acid and the polar lipids consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and one unidentified phospholipid. The predominant menaquinone was MK-7 (100%) and the major fatty acids (>10 %) comprised anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0. Based on the data from the current polyphasic studies, KQ-3T represents a novel species of the genus Alteribacter, for which the name Alteribacter keqinensis sp. nov. is proposed. The type strain is KQ-3T (=ACCC 61799T=KCTC 33933T).
Collapse
Affiliation(s)
- Jiading Liu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xinyu Zhang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hao Cao
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Liwei Guo
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Baisuo Zhao
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiaoxia Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yanan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Haisheng Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
10
|
Zhou H, Zhao D, Zhang S, Xue Q, Zhang M, Yu H, Zhou J, Li M, Kumar S, Xiang H. Metagenomic insights into the environmental adaptation and metabolism of Candidatus Haloplasmatales, one archaeal order thriving in saline lakes. Environ Microbiol 2022; 24:2239-2258. [PMID: 35048500 DOI: 10.1111/1462-2920.15899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 02/01/2023]
Abstract
The KTK 4A-related Thermoplasmata thrives in the sediment of saline lakes; however, systematic research on its taxonomy, environmental adaptation and metabolism is lacking. Here, we detected this abundant lineage in the sediment of five artificially separated ponds (salinity 7.0%-33.0%) within a Chinese soda-saline lake using culture-independent metagenomics and archaeal 16S rRNA gene amplicons. The phylogenies based on the 16S rRNA gene, and 122 archaeal ubiquitous single-copy proteins and genome-level identity analyses among the metagenome-assembled genomes demonstrate this lineage forming a novel order, Candidatus Haloplasmatales, comprising four genera affiliated with the identical family. Isoelectric point profiles of predicted proteomes suggest that most members adopt the energetically favourable 'salt-in' strategy. Functional prediction indicates the lithoheterotrophic nature with the versatile metabolic potentials for carbohydrate and organic acids as well as carbon monoxide and hydrogen utilization. Additionally, hydrogenase genes hdrABC-mvhADG are linked with incomplete reductive citrate cycle genes in the genomes, suggesting their functional connection. Comparison with the coupling of HdrABC-MvhADG and methanogenesis pathway provides new insights into the compatibility of laterally acquired methanogenesis with energy metabolism in the related order Methanomassiliicoccales. Globally, our research sheds light on the taxonomy, environmental adaptative mechanisms, metabolic potentials and evolutional significance of Ca. Haloplasmatales.
Collapse
Affiliation(s)
- Heng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shengjie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Manqi Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sumit Kumar
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Metabacillus dongyingensis sp. nov. Is Represented by the Plant Growth-Promoting Bacterium BY2G20 Isolated from Saline-Alkaline Soil and Enhances the Growth of Zea mays L. under Salt Stress. mSystems 2022; 7:e0142621. [PMID: 35229649 PMCID: PMC9040632 DOI: 10.1128/msystems.01426-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A novel plant growth-promoting rhizobacterium (PGPR), which was designated strain BY2G20, was isolated from saline-alkaline soil in Dongying, China. Strain BY2G20 can grow at a NaCl range from 0 to 7% and a pH range from 7 to 9 and can prevent the growth of the phytopathogen Ralstonia solanacearum. Based on its phenotypic and genomic characteristics and phylogenetic analysis, strain BY2G20 represents a novel species of the genus Metabacillus, for which the name Metabacillus dongyingensis sp. nov. is proposed. Comparative genomic analysis of strain BY2G20 with its closely related species exhibited a high level of evolutionary plasticity derived by horizontal gene transfer, which facilitated adaptative evolution. Different evolutionary constraints have operated on the diverse functions of BY2G20, with the gene adapted to saline-alkaline ecosystems experiencing functional constraints. We determined the genetic properties of saline-alkaline tolerance and plant growth promotion, such as cation-proton antiporters, cation transporters, osmoprotectant synthesis and transport, H+-transporting F1F0-ATPase, indole-3-acetic acid production, and secondary metabolite synthesis. We also evaluated the effects of strain BY2G20 on the growth of Zea mays L. (maize) under salt stress. The physiological parameters of maize such as plant height, stem diameter, dry biomass, and fresh biomass were significantly higher after inoculating strain BY2G20 under salt stress, indicating that inoculation with BY2G20 enhanced the growth of maize in saline areas. This study demonstrates that M. dongyingensis sp. nov. BY2G20 is a potential candidate for organic agriculture biofertilizers in saline-alkaline areas. IMPORTANCE Plant growth and yield are adversely affected by soil salinity. PGPRs can promote plant growth and enhance plant tolerance to salt stress. In this study, a saline-alkaline tolerant PGPR strain BY2G20 was isolated from the rhizosphere of Ulmus pumila in Dongying, China. Strain BY2G20 represents a novel species within the genus Metabacillus based on phenotypic, genomic, and phylogenetic analysis. Genomic components have undergone different functional constraints, and the disparity in the evolutionary rate may be associated with the adaptation to a specific niche. Genomic analysis revealed numerous adaptive features of strain BY2G20 to a saline-alkaline environment and rhizosphere, especially genes related to salt tolerance, pH adaptability, and plant growth promotion. Our work also exhibited that inoculation of strain BY2G20 enhanced the growth of maize under salt stress. This study demonstrates that PGPRs play an important role in stimulating salt tolerance in plants and can be used as biofertilizers to enhance the growth of crops in saline-alkaline areas.
Collapse
|
12
|
Sodium Energetic Cycle in the Natronophilic Bacterium Thioalkalivibrio versutus. Int J Mol Sci 2022; 23:ijms23041965. [PMID: 35216079 PMCID: PMC8874543 DOI: 10.3390/ijms23041965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
As inhabitants of soda lakes, Thioalkalivibrio versutus are halo- and alkaliphilic bacteria that have previously been shown to respire with the first demonstrated Na+-translocating cytochrome-c oxidase (CO). The enzyme generates a sodium-motive force (Δs) as high as −270 mV across the bacterial plasma membrane. However, in these bacteria, operation of the possible Δs consumers has not been proven. We obtained motile cells and used them to study the supposed Na+ energetic cycle in these bacteria. The resulting motility was activated in the presence of the protonophore 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), in line with the same effect on cell respiration, and was fully blocked by amiloride—an inhibitor of Na+-motive flagella. In immotile starving bacteria, ascorbate triggered CO-mediated respiration and motility, both showing the same dependence on sodium concentration. We concluded that, in T. versutus, Na+-translocating CO and Na+-motive flagella operate in the Na+ energetic cycle mode. Our research may shed light on the energetic reason for how these bacteria are confined to a narrow chemocline zone and thrive in the extreme conditions of soda lakes.
Collapse
|
13
|
Csitári B, Bedics A, Felföldi T, Boros E, Nagy H, Máthé I, Székely AJ. Anion-type modulates the effect of salt stress on saline lake bacteria. Extremophiles 2022; 26:12. [PMID: 35137260 PMCID: PMC8825391 DOI: 10.1007/s00792-022-01260-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Abstract
Beside sodium chloride, inland saline aquatic systems often contain other anions than chloride such as hydrogen carbonate and sulfate. Our understanding of the biological effects of salt composition diversity is limited; therefore, the aim of this study was to examine the effect of different anions on the growth of halophilic bacteria. Accordingly, the salt composition and concentration preference of 172 strains isolated from saline and soda lakes that differed in ionic composition was tested using media containing either carbonate, chloride or sulfate as anion in concentration values ranging from 0 to 0.40 mol/L. Differences in salt-type preference among bacterial strains were observed in relationship to the salt composition of the natural habitat they were isolated from indicating specific salt-type adaptation. Sodium carbonate represented the strongest selective force, while majority of strains was well-adapted to growth even at high concentrations of sodium sulfate. Salt preference was to some extent associated with taxonomy, although variations even within the same bacterial species were also identified. Our results suggest that the extent of the effect of dissolved salts in saline lakes is not limited to their concentration but the type of anion also substantially impacts the growth and survival of individual microorganisms.
Collapse
Affiliation(s)
- Bianka Csitári
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117, Budapest, Hungary
- Department of Ecology and Genetics/Limnology, Uppsala University EBC, Norbyvägen 18D, 75236, Uppsala, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165, Stockholm, Sweden
| | - Anna Bedics
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117, Budapest, Hungary
- Depatment of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, 2100, Gödöllő, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117, Budapest, Hungary
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina u. 29, 1113, Budapest, Hungary
| | - Emil Boros
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina u. 29, 1113, Budapest, Hungary
| | - Hajnalka Nagy
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117, Budapest, Hungary
| | - István Máthé
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104, Miercurea Ciuc, Romania
| | - Anna J Székely
- Department of Ecology and Genetics/Limnology, Uppsala University EBC, Norbyvägen 18D, 75236, Uppsala, Sweden.
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007, Uppsala, Sweden.
| |
Collapse
|
14
|
Yang Q, Guo PY, Abidueva EY, Li FN, Xue CM, Liu SW, Sun CH. Hoyosella lacisalsi sp. nov., a halotolerant actinobacterium isolated from the Lake Gudzhirganskoe. Int J Syst Evol Microbiol 2021; 71. [PMID: 34889730 DOI: 10.1099/ijsem.0.005145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, aerobic, non-motile, non-spore-forming and coccus-shaped strain, designated strain G463T, was isolated from the rhizosphere soil of Salicornia europaea L. collected from Lake Gudzhirganskoe in Siberia. Based on 16S rRNA gene phylogeny, strain G463T belonged to the genus Hoyosella, with the highest 16S rRNA gene sequence similarity to Hoyosella altamirensis DSM 45258T (96.1%). The major fatty acids were C17:1 ω8c, C16:0, C15 : 0 and C17:0. The strain contained meso-diaminopimelic acid as the cell-wall diagnostic diamino acid and arabinose, galactose and ribose as the whole-cell sugars. MK-8 and MK-7 were the predominant menaquinones. The polar lipid profile comprised diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, one unidentified phosphoglycolipid, two unidentified glycolipids and several unidentified lipids. Acetyl was the muramyl residue. Mycolic acids (C28-C34) were present. The G+C content of the genomic DNA was 68.3 mol%. Based on its phylogenetic, phenotypic and chemotaxonomic features, strain G463T was considered to represent a novel species of the genus Hoyosella, for which the name Hoyosella lacisalsi sp. nov. is proposed. The type strain is G463T (=JCM 33650T=CGMCC 1.17230T).
Collapse
Affiliation(s)
- Qin Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Pu-Yu Guo
- College of Life Sciences, Jiamusi University, Jiamusi, PR China
| | - Elena Y Abidueva
- Institute of General and Experimental Biology, Siberian Branch Russian Academy of Sciences, Sakhyanovoy St, Ulan-Ude, Russia
| | - Fei-Na Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Chun-Mei Xue
- College of Life Sciences, Jiamusi University, Jiamusi, PR China
| | - Shao-Wei Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Cheng-Hang Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| |
Collapse
|
15
|
Banda JF, Zhang Q, Ma L, Pei L, Du Z, Hao C, Dong H. Both pH and salinity shape the microbial communities of the lakes in Badain Jaran Desert, NW China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148108. [PMID: 34126487 DOI: 10.1016/j.scitotenv.2021.148108] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 05/27/2023]
Abstract
Badain Jaran Desert (BJD), characterized by extremely arid climate and tallest sand dunes in the world, is the second largest desert in China. Surprisingly, there are a large number of permanent lakes in this desert. At present, little is known about the composition and distribution of microbial communities in these desert lakes, which are an important bioresource and play a fundamental role in the elemental cycles of the lakes. In this study, the physicochemical characteristics and microbial communities of water samples from 15 lakes in BJD were comparatively investigated. The results showed that the lakes were rich in Na+, Cl-, CO32- and HCO3- while Ca2+ and Mg2+ were scarce, with pH 8.52-10.27 and salinity 1.05-478.70 g/L. Bacteria dominated exclusively in low saline lakes (salinity < 50 g/L) while archaea were predominant in hypersaline lakes (salinity > 250 g/L), which abundance increased along salinity gradient linearly. Genera Flavobacterium, Synechocystis and Roseobacter from phyla Bacteroidetes, Cyanobacteria, Alphaproteobacteria were the major members in low saline lakes whereas Halomonas, Aliidiomarina and Halopelagius from Gammaproteobacteria and Euryarchaeota were abundant in moderately saline lakes (salinity 50-250 g/L). The hypersaline lakes were predominated by extreme halophiles such as Halorubrum, Halohasta and Natronomonas from Euryarchaeota. The correlation among the microbes in the lakes was mainly positive, suggesting they can survive in the harsh environments through synergistic interactions. Statistical analyses indicated that physicochemical characteristics rather than spatial factors shaped the microbial communities in the desert lakes. The pH was the most important environmental factor controlling alpha diversity, while salinity was the major driver determining microbial community structure in BJD lakes. In contrast, geographic factors had no significant impact on the microbial community compositions.
Collapse
Affiliation(s)
- Joseph Frazer Banda
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Qin Zhang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Linqiang Ma
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Lixin Pei
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Zerui Du
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Chunbo Hao
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China.
| | - Hailiang Dong
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
16
|
Hao X, Mu T, Mohammed Sharshar M, Yang M, Zhong W, Jia Y, Chen Z, Yang G, Xing J. Revealing sulfate role in empowering the sulfur-oxidizing capacity of Thioalkalivibrio versutus D301 for an enhanced desulfurization process. BIORESOURCE TECHNOLOGY 2021; 337:125367. [PMID: 34139561 DOI: 10.1016/j.biortech.2021.125367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Haloalkaliphilic Thioalkalivibrio, a dominant genus for sulfide removal, has attracted growing interest. However, the bacterial biological response to this process's final product, sulfate, has not been well-studied. Here, thiosulfate oxidation and sulfur formation by T. versutus D301 were being enhanced with increasing sulfate supply. With the addition of 0.73 M sulfate, the thiosulfate utilization rate and sulfur production were improved by 68.1% and 120.1% compared with carbonate-grown control at the same salinity (1.8 M). For sulfate-grown cells, based on metabolic analysis, the downregulation of central carbon metabolism indicated that sulfate triggered a decrease in energy conservation efficiency. Additionally, the gene expression analysis further revealed that sulfate induced the inhibition of sulfur to sulfate oxidation, causing the upregulation of thiosulfate to sulfur oxidation for providing cells with additional energy. This study enhances researchers' understanding regarding the sulfate effect on the bio-desulfurization process and presents a new perspective of optimizing the biotechniques.
Collapse
Affiliation(s)
- Xuemi Hao
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tingzhen Mu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | | | - Maohua Yang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wei Zhong
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, CAS, Shenzhen 518055, China
| | - Yunpu Jia
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zheng Chen
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Gama Yang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, PR China.
| |
Collapse
|
17
|
Xue Q, Zhao D, Zhang S, Zhou H, Zuo Z, Zhou J, Li M, Xiang H. Highly integrated adaptive mechanisms in Spiribacter halalkaliphilus, a bacterium abundant in Chinese soda-saline lakes. Environ Microbiol 2021; 23:6463-6482. [PMID: 34587356 PMCID: PMC9292931 DOI: 10.1111/1462-2920.15794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
Soda-saline lakes are polyextreme environments inhabited by many haloalkaliphiles, including one of the most abundant Spiribacter species. However, its mechanisms of adaptation are not ecophysiologically characterized. Based on a large-scale cultivation strategy, we obtained a representative isolate of this Spiribacter species whose relative abundance was the highest (up to 15.63%) in a wide range of salinities in the soda-saline lakes in Inner Mongolia, China. This species is a chemoorganoheterotrophic haloalkaliphile. It has a small and streamlined genome and utilizes a wide variety of compatible solutes to resist osmotic pressure and multiple monovalent cation/proton antiporters for pH homeostasis. In addition to growth enhancement by light under microaerobic conditions, cell growth, organic substrate consumption and polyhydroxybutyrate biosynthesis were also improved by inorganic sulfide. Both quantitative RT-PCR and enzymatic assays verified that sulfide:quinone oxidoreductase was upregulated during this process. Metatranscriptomic analysis indicated that all genes related to environmental adaptation were transcribed in natural environments. Overall, this study has identified a novel abundant haloalkaliphile with multiple and highly integrated adaptive strategies and found that inorganic sulfide was able to improve the adaptation of a heterotroph to polyextreme environments.
Collapse
Affiliation(s)
- Qiong Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shengjie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenqiang Zuo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Molecular and Physiological Adaptations to Low Temperature in Thioalkalivibrio Strains Isolated from Soda Lakes with Different Temperature Regimes. mSystems 2021; 6:6/2/e01202-20. [PMID: 33906913 PMCID: PMC8092127 DOI: 10.1128/msystems.01202-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Thioalkalivibrio comprises sulfur-oxidizing bacteria thriving in soda lakes at high pH and salinity. Depending on the geographical location and the season, these lakes can strongly vary in temperature. To obtain a comprehensive understanding of the molecular and physiological adaptations to low temperature, we compared the responses of two Thioalkalivibrio strains to low (10°C) and high (30°C) temperatures. For this, the strains were grown under controlled conditions in chemostats and analyzed for their gene expression (RNA sequencing [RNA-Seq]), membrane lipid composition, and glycine betaine content. The strain Thioalkalivibrio versutus AL2T originated from a soda lake in southeast Siberia that is exposed to strong seasonal temperature differences, including freezing winters, whereas Thioalkalivibrio nitratis ALJ2 was isolated from an East African Rift Valley soda lake with a constant warm temperature the year round. The strain AL2T grew faster than ALJ2 at 10°C, likely due to its 3-fold-higher concentration of the osmolyte glycine betaine. Moreover, significant changes in the membrane lipid composition were observed for both strains, leading to an increase in their unsaturated fatty acid content via the Fab pathway to avoid membrane stiffness. Genes for the transcriptional and translational machinery, as well as for counteracting cold-induced hampering of nucleotides and proteins, were upregulated. Oxidative stress was reduced by induction of vitamin B12 biosynthesis genes, and growth at 10°C provoked downregulation of genes involved in the second half of the sulfur oxidation pathway. Genes for intracellular signal transduction were differentially expressed, and interestingly, AL2T upregulated flagellin expression, whereas ALJ2 downregulated it. IMPORTANCE In addition to their haloalkaline conditions, soda lakes can also harbor a variety of other extreme parameters, to which their microbial communities need to adapt. However, for most of these supplementary stressors, it is not well known yet how haloalkaliphiles adapt and resist. Here, we studied the strategy for adaptation to low temperature in the haloalkaliphilic genus Thioalkalivibrio by using two strains isolated from soda lakes with different temperature regimes. Even though the strains showed a strong difference in growth rate at 10°C, they exhibited similar molecular and physiological adaptation responses. We hypothesize that they take advantage of resistance mechanisms against other stressors commonly found in soda lakes, which are therefore maintained in the bacteria living in the absence of low-temperature pressure. A major difference, however, was detected for their glycine betaine content at 10°C, highlighting the power of this osmolyte to also act as a key compound in cryoprotection. Author Video: An author video summary of this article is available.
Collapse
|
19
|
Muntyan MS, Morozov DA, Leonova YF, Ovchinnikova TV. Identification of Na+-Pumping Cytochrome Oxidase in the Membranes of Extremely Alkaliphilic Thioalkalivibrio Bacteria. BIOCHEMISTRY (MOSCOW) 2021; 85:1631-1639. [PMID: 33705300 DOI: 10.1134/s0006297920120147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
For the first time, the functioning of the oxygen reductase Na+-pump (Na+-pumping cytochrome c oxidase of the cbb3-type) was demonstrated by examining the respiratory chain of the extremely alkaliphilic bacterium Thioalkalivibrio versutus [Muntyan, M. S., et al. (2015) Cytochrome cbb3 of Thioalkalivibrio is a Na+-pumping cytochrome oxidase, Proc. Natl. Acad. Sci. USA, 112, 7695-7700], a product of the ccoNOQP operon. In this study, we detected and identified this enzyme using rabbit polyclonal antibody against the predicted C-terminal amino acid sequence of its catalytic subunit. We found that this cbb3-type oxidase is synthesized in bacterial cells, where it is located in the membranes. The 48-kDa oxidase subunit (CcoN) is catalytic, while subunits CcoO and CcoP with molecular masses of 29 and 34 kDa, respectively, are cytochromes c. The theoretical pI values of the CcoN, CcoO, and CcoP subunits were determined. It was shown that parts of the CcoO and CcoP subunits exposed to the aqueous phase on the cytoplasmic membrane P-side are enriched with negatively charged amino acid residues, in contrast to the parts of the integral subunit CcoN adjacent to the aqueous phase. Thus, the Na+-pumping cytochrome c oxidase of T. versutus, both in function and in structure, demonstrates adaptation to extremely alkaline conditions.
Collapse
Affiliation(s)
- M S Muntyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - D A Morozov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Y F Leonova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - T V Ovchinnikova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
20
|
Daebeler A, Kitzinger K, Koch H, Herbold CW, Steinfeder M, Schwarz J, Zechmeister T, Karst SM, Albertsen M, Nielsen PH, Wagner M, Daims H. Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant Nitrospira. THE ISME JOURNAL 2020; 14:2967-2979. [PMID: 32709974 PMCID: PMC7784846 DOI: 10.1038/s41396-020-0724-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/01/2020] [Accepted: 07/16/2020] [Indexed: 12/27/2022]
Abstract
Nitrite-oxidizing bacteria of the genus Nitrospira are key players of the biogeochemical nitrogen cycle. However, little is known about their occurrence and survival strategies in extreme pH environments. Here, we report on the discovery of physiologically versatile, haloalkalitolerant Nitrospira that drive nitrite oxidation at exceptionally high pH. Nitrospira distribution, diversity, and ecophysiology were studied in hypo- and subsaline (1.3-12.8 g salt/l), highly alkaline (pH 8.9-10.3) lakes by amplicon sequencing, metagenomics, and cultivation-based approaches. Surprisingly, not only were Nitrospira populations detected, but they were also considerably diverse with presence of members from Nitrospira lineages I, II and IV. Furthermore, the ability of Nitrospira enrichment cultures to oxidize nitrite at neutral to highly alkaline pH of 10.5 was demonstrated. Metagenomic analysis of a newly enriched Nitrospira lineage IV species, "Candidatus Nitrospira alkalitolerans", revealed numerous adaptive features of this organism to its extreme environment. Among them were a sodium-dependent N-type ATPase and NADH:quinone oxidoreductase next to the proton-driven forms usually found in Nitrospira. Other functions aid in pH and cation homeostasis and osmotic stress defense. "Ca. Nitrospira alkalitolerans" also possesses group 2a and 3b [NiFe] hydrogenases, suggesting it can use hydrogen as alternative energy source. These results reveal how Nitrospira cope with strongly fluctuating pH and salinity conditions and expand our knowledge of nitrogen cycling in extreme habitats.
Collapse
Affiliation(s)
- Anne Daebeler
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria.
| | - Katharina Kitzinger
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Max Planck Institute for Marine Microbiology, Department of Biogeochemistry, Bremen, Germany
| | - Hanna Koch
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Craig W Herbold
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Michaela Steinfeder
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Jasmin Schwarz
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | | | - Søren M Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- University of Vienna, The Comammox Research Platform, Vienna, Austria
| | - Holger Daims
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria.
- University of Vienna, The Comammox Research Platform, Vienna, Austria.
| |
Collapse
|
21
|
Kumar S, Paul D, Bhushan B, Wakchaure GC, Meena KK, Shouche Y. Traversing the "Omic" landscape of microbial halotolerance for key molecular processes and new insights. Crit Rev Microbiol 2020; 46:631-653. [PMID: 32991226 DOI: 10.1080/1040841x.2020.1819770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Post-2005, the biology of the salt afflicted habitats is predominantly studied employing high throughput "Omic" approaches comprising metagenomics, transcriptomics, metatranscriptomics, metabolomics, and proteomics. Such "Omic-based" studies have deciphered the unfamiliar details about microbial salt-stress biology. The MAGs (Metagenome-assembled genomes) of uncultured halophilic microbial lineages such as Nanohaloarchaea and haloalkaliphilic members within CPR (Candidate Phyla Radiation) have been reconstructed from diverse hypersaline habitats. The study of MAGs of such uncultured halophilic microbial lineages has unveiled the genomic basis of salt stress tolerance in "yet to culture" microbial lineages. Furthermore, functional metagenomic approaches have been used to decipher the novel genes from uncultured microbes and their possible role in microbial salt-stress tolerance. The present review focuses on the new insights into microbial salt-stress biology gained through different "Omic" approaches. This review also summarizes the key molecular processes that underlie microbial salt-stress response, and their role in microbial salt-stress tolerance has been confirmed at more than one "Omic" levels.
Collapse
Affiliation(s)
- Satish Kumar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India.,ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, India
| | - Dhiraj Paul
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Bharat Bhushan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - G C Wakchaure
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, India
| | - Kamlesh K Meena
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, India
| | - Yogesh Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| |
Collapse
|
22
|
Zhao D, Zhang S, Xue Q, Chen J, Zhou J, Cheng F, Li M, Zhu Y, Yu H, Hu S, Zheng Y, Liu S, Xiang H. Abundant Taxa and Favorable Pathways in the Microbiome of Soda-Saline Lakes in Inner Mongolia. Front Microbiol 2020; 11:1740. [PMID: 32793172 PMCID: PMC7393216 DOI: 10.3389/fmicb.2020.01740] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Soda-saline lakes are a special type of alkaline lake in which the chloride concentration is greater than the carbonate/bicarbonate concentration. Due to the high pH and a usually higher osmotic pressure than that of a normal soda lake, the microbes may need more energy to thrive in such a double-extreme environment. In this study, we systematically investigated the microbiome of the brine and sediment samples of nine artificially separated ponds (salinities from 5.5% to saturation) within two soda-saline lakes in Inner Mongolia of China, assisted by deep metagenomic sequencing. The main inorganic ions shaped the microbial community in both the brines and sediments, and the chloride concentration exhibited the most significant effect. A total of 385 metagenome-assembled genomes (MAGs) were generated, in which 38 MAGs were revealed as the abundant species in at least one of the eighteen different samples. Interestingly, these abundant species also represented the most branches of the microbiome of the soda-saline lakes at the phylum level. These abundant taxa were close relatives of microorganisms from classic soda lakes and neutral saline environments, but forming a combination of both habitats. Notably, approximately half of the abundant MAGs had the potential to drive dissimilatory sulfur cycling. These MAGs included four autotrophic Ectothiorhodospiraceae MAGs, one Cyanobacteria MAG and nine heterotrophic MAGs with the potential to oxidize sulfur, as well as four abundant MAGs containing genes for elemental sulfur respiration. The possible reason is that reductive sulfur compounds could provide additional energy for the related species, and reductions of oxidative sulfur compounds are more prone to occur under alkaline conditions which support the sulfur cycling. In addition, a unique 1,4-alpha-glucan phosphorylation pathway, but not a normal hydrolysis one, was found in the abundant Candidatus Nanohaloarchaeota MAG NHA-1, which would produce more energy in polysaccharide degradation. In summary, this work has revealed the abundant taxa and favorable pathways in the soda-saline lakes, indicating that efficient energy regeneration pathway may increase the capacity for environmental adaptation in such saline-alkaline environments. These findings may help to elucidate the relationship between microbial metabolism and adaptation to extreme environments.
Collapse
Affiliation(s)
- Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shengjie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junyu Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feiyue Cheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanning Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Draft Genome Sequence of Alkalicoccus halolimnae BZ-SZ-XJ29 T, a Moderately Halophilic Bacterium Isolated from a Salt Lake. Microbiol Resour Announc 2020; 9:9/27/e00500-20. [PMID: 32616637 PMCID: PMC7330239 DOI: 10.1128/mra.00500-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The moderate halophile Alkalicoccus halolimnae BZ-SZ-XJ29T grows optimally in a relative broad range of 8.3% to 12.3% (wt/vol) NaCl. The draft genome consists of approximately 3.66 Mb and contains 3,534 putative genes. Various genes involved in osmotic stress were predicted, providing pertinent insights into specific adaptations to the hypersaline environment.
Collapse
|
24
|
Cubillos CF, Paredes A, Yáñez C, Palma J, Severino E, Vejar D, Grágeda M, Dorador C. Insights Into the Microbiology of the Chaotropic Brines of Salar de Atacama, Chile. Front Microbiol 2019; 10:1611. [PMID: 31354691 PMCID: PMC6637823 DOI: 10.3389/fmicb.2019.01611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 02/02/2023] Open
Abstract
Microbial life inhabiting hypersaline environments belong to a limited group of extremophile or extremotolerant taxa. Natural or artificial hypersaline environments are not limited to high concentrations of NaCl, and under such conditions, specific adaptation mechanisms are necessary to permit microbial survival and growth. Argentina, Bolivia, and Chile include three large salars (salt flats) which globally, represent the largest lithium reserves, and are commonly referred to as the Lithium Triangle Zone. To date, a large amount of information has been generated regarding chemical, geological, meteorological and economical perspectives of these salars. However, there is a remarkable lack of information regarding the biology of these unique environments. Here, we report the presence of two bacterial strains (isolates LIBR002 and LIBR003) from one of the most hypersaline lithium-dominated man-made environments (total salinity 556 g/L; 11.7 M LiCl) reported to date. Both isolates were classified to the Bacillus genera, but displayed differences in 16S rRNA gene and fatty acid profiles. Our results also revealed that the isolates are lithium-tolerant and that they are phylogenetically differentiated from those Bacillus associated with high NaCl concentration environments, and form a new clade from the Lithium Triangle Zone. To determine osmoadaptation strategies in these microorganisms, both isolates were characterized using morphological, metabolic and physiological attributes. We suggest that our characterization of bacterial isolates from a highly lithium-enriched environment has revealed that even at such extreme salinities with high concentrations of chaotropic solutes, scope for microbial life exists. These conditions have previously been considered to limit the development of life, and our work extends the window of life beyond high concentrations of MgCl2, as previously reported, to LiCl. Our results can be used to further the understanding of salt tolerance, most especially for LiCl-dominated brines, and likely have value as models for the understanding of putative extra-terrestrial (e.g., Martian) life.
Collapse
Affiliation(s)
- Carolina F. Cubillos
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Department of Chemical Engineering and Mineral Process, Center for Advanced Study of Lithium and Industrial Minerals, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| | - Adrián Paredes
- Laboratorio Química Biológica, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Carolina Yáñez
- Laboratorio Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jenifer Palma
- Departamento de Ciencias de los Alimentos, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Esteban Severino
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Drina Vejar
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| | - Mario Grágeda
- Department of Chemical Engineering and Mineral Process, Center for Advanced Study of Lithium and Industrial Minerals, Universidad de Antofagasta, Antofagasta, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
25
|
Microbial Community in Hyperalkaline Steel Slag-Fill Emulates Serpentinizing Springs. DIVERSITY 2019. [DOI: 10.3390/d11070103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To date, a majority of studies of microbial life in hyperalkaline settings focus on environments that are also highly saline (haloalkaline). Haloalkaline conditions offer microbes abundant workarounds to maintain pH homeostasis, as salt ions can be exchanged for protons by dedicated antiporter proteins. Yet hyperalkaline freshwater systems also occur both naturally and anthropogenically, such as the slag fill aquifers around former Lake Calumet (Chicago, IL, USA). In this study, 16S rRNA gene sequences and metagenomic sequence libraries were collected to assess the taxonomic composition and functional potential of microbes present in these slag-polluted waterways. Relative 16S rRNA gene abundances in Calumet sediment and water samples describe community compositions not significantly divergent from those in nearby circumneutral conditions. Major differences in composition are mainly driven by Proteobacteria, primarily one sequence cluster closely related to Hydrogenophaga, which comprises up to 85% of 16S rRNA gene abundance in hyperalkaline surface sediments. Sequence identity indicates this novel species belongs to the recently established genus Serpentinomonas, a bacterial lineage associated with natural freshwater hyperalkaline serpentinizing springs.
Collapse
|
26
|
Draft Genome Sequence of Alkalicoccus saliphilus DSM 15402 T, a Haloalkaliphilic Bacterium Isolated from a Mineral Pool. Microbiol Resour Announc 2019; 8:8/24/e00266-19. [PMID: 31196917 PMCID: PMC6588035 DOI: 10.1128/mra.00266-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The haloalkaliphilic bacterium Alkalicoccus saliphilus DSM 15402T was isolated from a mineral pool. It grows aerobically at an optimum of 15% (wt/vol) salinity and pH 9.0. The draft genome consists of approximately 3.52 Mb and contains 3,434 predicted genes. Various genes are potentially involved in the adaptation mechanisms for both osmotic stress and pH homeostasis, providing insight into specific adaptations to this double-extreme environment. The haloalkaliphilic bacterium Alkalicoccus saliphilus DSM 15402T was isolated from a mineral pool. It grows aerobically at an optimum of 15% (wt/vol) salinity and pH 9.0. The draft genome consists of approximately 3.52 Mb and contains 3,434 predicted genes. Various genes are potentially involved in the adaptation mechanisms for both osmotic stress and pH homeostasis, providing insight into specific adaptations to this double-extreme environment.
Collapse
|
27
|
Draft Genome Sequence of
Salipaludibacillus keqinensis
ACCC 60430
T
, an Aerobic Halophilic Bacterium Isolated from a Salt Lake. Microbiol Resour Announc 2019; 8:8/23/e00339-19. [PMID: 31171616 PMCID: PMC6554603 DOI: 10.1128/mra.00339-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The haloalkaliphilic bacterium Salipaludibacillus keqinensis ACCC 60430T, which grows optimally at 8.0% (wt/vol) Na+ and pH 9.0, was isolated from Keqin Lake in Qiqihaer, China. The draft genome includes 4,006 predicted genes and 3,784 coding sequences (CDSs). The haloalkaliphilic bacterium Salipaludibacillus keqinensis ACCC 60430T, which grows optimally at 8.0% (wt/vol) Na+ and pH 9.0, was isolated from Keqin Lake in Qiqihaer, China. The draft genome includes 4,006 predicted genes and 3,784 coding sequences (CDSs). Genomic analysis showed that various genes may explain the mechanism of salt and alkali resistance.
Collapse
|
28
|
Rimboud M, Achouak W. Electroautotrophy of Thioalkalivibrio nitratireducens. Bioelectrochemistry 2019; 126:48-55. [DOI: 10.1016/j.bioelechem.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
|
29
|
Insights into Xylan Degradation and Haloalkaline Adaptation through Whole-Genome Analysis of Alkalitalea saponilacus, an Anaerobic Haloalkaliphilic Bacterium Capable of Secreting Novel Halostable Xylanase. Genes (Basel) 2018; 10:genes10010001. [PMID: 30577500 PMCID: PMC6357142 DOI: 10.3390/genes10010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/06/2018] [Accepted: 12/13/2018] [Indexed: 11/19/2022] Open
Abstract
The obligately anaerobic haloalkaliphilic bacterium Alkalitalea saponilacus can use xylan as the sole carbon source and produce propionate as the main fermentation product. Using mixed carbon sources of 0.4% (w/v) sucrose and 0.1% (w/v) birch xylan, xylanase production from A. saponilacus was 3.2-fold greater than that of individual carbon sources of 0.5% (w/v) sucrose or 0.5% (w/v) birch xylan. The xylanse is halostable and exhibits optimal activity over a broad salt concentration (2–6% NaCl). Its activity increased approximately 1.16-fold by adding 0.2% (v/v) Tween 20. To understand the potential genetic mechanisms of xylan degradation and molecular adaptation to saline-alkali extremes, the complete genome sequence of A. saponilacus was performed with the pacBio single-molecule real-time (SMRT) and Illumina Misseq platforms. The genome contained one chromosome with a total size of 4,775,573 bps, and a G+C genomic content of 39.27%. Ten genes relating to the pathway for complete xylan degradation were systematically identified. Furthermore, various genes were predicted to be involved in isosmotic cytoplasm via the “compatible-solutes strategy” and cytoplasmic pH homeostasis though the “influx of hydrogen ions”. The halostable xylanase from A. saponilacus and its genomic sequence information provide some insight for potential applications in industry under double extreme conditions.
Collapse
|
30
|
Draft Genome Sequence of Halomonas urumqiensis BZ-SZ-XJ27 T, an Aerobic Halophilic Bacterium Isolated from a Salt Lake. Microbiol Resour Announc 2018; 7:MRA00877-18. [PMID: 30533863 PMCID: PMC6211347 DOI: 10.1128/mra.00877-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 11/20/2022] Open
Abstract
The aerobic halophilic bacterium Halomonas urumqiensis BZ-SZ-XJ27T, growing optimally at 1.42 M Na+, with a range of 0.22 to 4.32 M Na+, was isolated from a salt lake in the Xinjiang Uyghur Autonomous Region of China. Here, we report the draft genome sequence of strain BZ-SZ-XJ27T, which consists of approximately 3.97 Mb and contains 3,588 predicted genes. The aerobic halophilic bacterium Halomonas urumqiensis BZ-SZ-XJ27T, growing optimally at 1.42 M Na+, with a range of 0.22 to 4.32 M Na+, was isolated from a salt lake in the Xinjiang Uyghur Autonomous Region of China. Here, we report the draft genome sequence of strain BZ-SZ-XJ27T, which consists of approximately 3.97 Mb and contains 3,588 predicted genes. Some of the genes that maintain intracellular osmotic balance were identified, offering valuable insights into specific adaptations to the hypersaline environment.
Collapse
|
31
|
Draft Genome Sequence of Bacillus sp. Strain YSP-3, a Halophilic, Alkaliphilic Bacterium Isolated from a Salt Lake. Microbiol Resour Announc 2018; 7:MRA00882-18. [PMID: 30533910 PMCID: PMC6256447 DOI: 10.1128/mra.00882-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/10/2018] [Indexed: 11/20/2022] Open
Abstract
The halophilic, alkaliphilic bacterium Bacillus sp. strain YSP-3 was isolated from a salt lake. It grows optimally at 8% (wt/vol) NaCl (pH 9.0). The draft genome is composed of 4,006 predicted genes. Genomic analysis showed that various genes are potentially involved in the adaptation mechanisms for osmotic stress and pH homeostasis.
Collapse
|
32
|
Sorokin DY, Muntyan MS, Toshchakov SV, Korzhenkov A, Kublanov IV. Phenotypic and Genomic Properties of a Novel Deep-Lineage Haloalkaliphilic Member of the Phylum Balneolaeota From Soda Lakes Possessing Na +-Translocating Proteorhodopsin. Front Microbiol 2018; 9:2672. [PMID: 30483225 PMCID: PMC6243061 DOI: 10.3389/fmicb.2018.02672] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/19/2018] [Indexed: 12/14/2022] Open
Abstract
Stable development of a heterotrophic bacterial satellite with a peculiar cell morphology has been observed in several enrichment cultures of haloalkaliphilic benthic filamentous cyanobacteria from a hypersaline soda lake in Kulunda Steppe (Altai, Russia). The organism was isolated in pure culture (strain Omega) using sonicated cyanobacterial cells as substrate and it was identified as a deep phylogenetic lineage within the recently proposed phylum Balneolaeota. It is an obligately aerobic heterotroph utilizing proteins and peptides for growth. The cell morphology significantly varied from semicircles to long filaments depending on the growth conditions. The cultures are red-orange colored due to a presence of carotenoids. The isolate is an obligate alkaliphile with a pH range for growth from 8.5 to 10.5 (optimum at 9.5-10) and moderately salt-tolerant with a range from 0.3 to 3 M total Na+ (optimum at 1 M). The genome analysis of strain Omega demonstrated a presence of gene, encoding a proteorhodopsin forming a separate branch in the sodium-translocating proteorhodopsin family. Experiments with washed cells of Omega confirmed light-dependent sodium export. A possible physiological role of the sodium proteorhodopsin in strain Omega is discussed. Phylogenomic analysis demostrated that strain Omega forms an deep, independent branch of a new genus and family level within a recently established phylum Balneolaeota.
Collapse
Affiliation(s)
- Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Maria S. Muntyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Stepan V. Toshchakov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | | | - Ilya V. Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
33
|
Cristea A, Baricz A, Leopold N, Floare C, Borodi G, Kacso I, Tripon S, Bulzu P, Andrei A, Cadar O, Levei E, Banciu H. Polyhydroxybutyrate production by an extremely halotolerant
Halomonas elongata
strain isolated from the hypersaline meromictic Fără Fund Lake (Transylvanian Basin, Romania). J Appl Microbiol 2018; 125:1343-1357. [DOI: 10.1111/jam.14029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 11/27/2022]
Affiliation(s)
- A. Cristea
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology Babeş‐Bolyai University Cluj‐Napoca Romania
- Molecular Biology Center, Institute for Interdisciplinary Research in Bio‐Nano‐Sciences Babeş‐Bolyai University Cluj‐Napoca Romania
| | - A. Baricz
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology Babeş‐Bolyai University Cluj‐Napoca Romania
- Department of Experimental Biology and Biochemistry National Institute of Research and Development for Biological Sciences, Institute of Biological Research Cluj‐Napoca Romania
| | - N. Leopold
- Department of Biomolecular Physics, Faculty of Physics Babeș‐Bolyai University Cluj‐Napoca Romania
| | - C.G. Floare
- Department of Biomolecular and Molecular Physics National Institute for Research and Development of Isotopic and Molecular Technologies Cluj‐Napoca Romania
| | - G. Borodi
- Department of Biomolecular and Molecular Physics National Institute for Research and Development of Isotopic and Molecular Technologies Cluj‐Napoca Romania
| | - I. Kacso
- Department of Biomolecular and Molecular Physics National Institute for Research and Development of Isotopic and Molecular Technologies Cluj‐Napoca Romania
| | - S. Tripon
- Electron Microscopy Center Babeș‐Bolyai University Cluj‐Napoca Romania
| | - P.A. Bulzu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology Babeş‐Bolyai University Cluj‐Napoca Romania
- Molecular Biology Center, Institute for Interdisciplinary Research in Bio‐Nano‐Sciences Babeş‐Bolyai University Cluj‐Napoca Romania
| | - A.‐Ș. Andrei
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology Babeş‐Bolyai University Cluj‐Napoca Romania
- Department of Aquatic Microbial Ecology Institute of Hydrobiology, Biology Center of the Academy of Sciences of the Czech Republic České Budějovice Czech Republic
| | - O. Cadar
- INCDO‐INOE 2000 Research Institute for Analytical Instrumentation Cluj‐Napoca Romania
| | - E.A. Levei
- INCDO‐INOE 2000 Research Institute for Analytical Instrumentation Cluj‐Napoca Romania
| | - H.L. Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology Babeş‐Bolyai University Cluj‐Napoca Romania
- Molecular Biology Center, Institute for Interdisciplinary Research in Bio‐Nano‐Sciences Babeş‐Bolyai University Cluj‐Napoca Romania
| |
Collapse
|
34
|
Andreote APD, Dini-Andreote F, Rigonato J, Machineski GS, Souza BCE, Barbiero L, Rezende-Filho AT, Fiore MF. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom. Front Microbiol 2018; 9:244. [PMID: 29520256 PMCID: PMC5827094 DOI: 10.3389/fmicb.2018.00244] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/31/2018] [Indexed: 11/29/2022] Open
Abstract
Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600) potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake) and by no record of cyanobacterial blooms (Salina Preta, black-water lake). The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii. This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes.
Collapse
Affiliation(s)
- Ana P. D. Andreote
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Francisco Dini-Andreote
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Janaina Rigonato
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Bruno C. E. Souza
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Laurent Barbiero
- Observatoire Midi-Pyrénées, Géosciences Environnement Toulouse, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Ary T. Rezende-Filho
- Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Marli F. Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
35
|
Tavano OL, Berenguer-Murcia A, Secundo F, Fernandez-Lafuente R. Biotechnological Applications of Proteases in Food Technology. Compr Rev Food Sci Food Saf 2018; 17:412-436. [DOI: 10.1111/1541-4337.12326] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Olga Luisa Tavano
- Faculty of Nutrition; Alfenas Federal Univ.; 700 Gabriel Monteiro da Silva St Alfenas MG 37130-000 Brazil
| | - Angel Berenguer-Murcia
- Inorganic Chemistry Dept. and Materials Science Inst.; Alicante Univ.; Ap. 99 E-03080 Alicante Spain
| | - Francesco Secundo
- Istit. di Chimica del Riconoscimento Molecolare; CNR; v. Mario Bianco 9 20131 Milan Italy
| | | |
Collapse
|
36
|
Zhai L, Xie J, Lin Y, Cheng K, Wang L, Yue F, Guo J, Liu J, Yao S. Genome sequencing and heterologous expression of antiporters reveal alkaline response mechanisms of Halomonas alkalicola. Extremophiles 2017; 22:221-231. [PMID: 29270851 DOI: 10.1007/s00792-017-0991-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/08/2017] [Indexed: 11/30/2022]
Abstract
Halomonas alkalicola CICC 11012s is an alkaliphilic and halotolerant bacterium isolated from a soap-making tank (pH > 10) from a household-product plant. This strain can propagate at pH 12.5, which is fatal to most bacteria. Genomic analysis revealed that the genome size was 3,511,738 bp and contained 3295 protein-coding genes, including a complete cell wall and plasma membrane lipid biosynthesis pathway. Furthermore, four putative Na+/H+ and K+/H+ antiporter genes, or gene clusters, designated as HaNhaD, HaNhaP, HaMrp and HaPha, were identified within the genome. Heterologous expression of these genes in antiporter-deficient Escherichia coli indicated that HaNhaD, an Na+/H+ antiporter, played a dominant role in Na+ tolerance and pH homeostasis in acidic, neutral and alkaline environments. In addition, HaMrp exhibited Na+ tolerance; however, it functioned mainly in alkaline conditions. Both HaNhaP and HaPha were identified as K+/H+ antiporters that played an important role in high alkalinity and salinity. In summary, genome analysis and heterologous expression experiments demonstrated that a complete set of adaptive strategies have been developed by the double extremophilic strain CICC 11012s in response to alkalinity and salinity. Specifically, four antiporters exhibiting different physiological roles for different situations worked together to support the strain in harsh surroundings.
Collapse
Affiliation(s)
- Lei Zhai
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China
| | - Jiuyan Xie
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China
| | - Yafang Lin
- Procter & Gamble Technologies (Beijing) Ltd, Beijing, 101312, People's Republic of China
| | - Kun Cheng
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China
| | - Lijiang Wang
- Procter & Gamble Technologies (Beijing) Ltd, Beijing, 101312, People's Republic of China
| | - Feng Yue
- Procter & Gamble Technologies (Beijing) Ltd, Beijing, 101312, People's Republic of China
| | - Jingyan Guo
- Procter & Gamble Technologies (Beijing) Ltd, Beijing, 101312, People's Republic of China
| | - Jiquan Liu
- Procter & Gamble International Operations SA Singapore Branch, 70 Biopolis Street, Singapore, 138547, Singapore.
| | - Su Yao
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China.
| |
Collapse
|
37
|
Draft Genome Sequence of Natronolimnobius baerhuensis CGMCC 1.3597 T, an Aerobic Haloalkaliphilic Archaeon Isolated from a Soda Lake. GENOME ANNOUNCEMENTS 2017; 5:5/38/e00710-17. [PMID: 28935723 PMCID: PMC5609402 DOI: 10.1128/genomea.00710-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The haloalkaliphilic archaeon Natronolimnobius baerhuensis was isolated from a soda lake in Inner Mongolia (China), growing optimally at about 20% NaCl and pH 9.0. The draft genome consists of approximately 3.91 Mb and contains 3,810 predicted genes. Some genes that regulate intracellular osmotic stress and pH homeostasis were identified, providing insight into specific adaptations to this double-extreme environment.
Collapse
|
38
|
Draft Genome Sequence of Natranaerobius trueperi DSM 18760
T
, an Anaerobic, Halophilic, Alkaliphilic, Thermotolerant Bacterium Isolated from a Soda Lake. GENOME ANNOUNCEMENTS 2017; 5:5/36/e00785-17. [PMID: 28883132 PMCID: PMC5589526 DOI: 10.1128/genomea.00785-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The anaerobic, halophilic, alkaliphilic, thermotolerant bacterium
Natranaerobius trueperi
was isolated from a soda lake in Wadi An Natrun, Egypt. It grows optimally at 3.7 M Na
+
, pH 9.5, and 43°C. The draft genome consists of 2.63 Mb and is composed of 2,681 predicted genes. Genomic analysis showed that various genes are potentially involved in the adaptation mechanisms for osmotic stress, pH homeostasis, and high temperatures.
Collapse
|
39
|
Szabó A, Korponai K, Kerepesi C, Somogyi B, Vörös L, Bartha D, Márialigeti K, Felföldi T. Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles 2017; 21:639-649. [PMID: 28389755 DOI: 10.1007/s00792-017-0932-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/31/2017] [Indexed: 11/26/2022]
Abstract
Soda pans of the Pannonian steppe are unique environments regarding their physical and chemical characteristics: shallowness, high turbidity, intermittent character, alkaline pH, polyhumic organic carbon concentration, hypertrophic condition, moderately high salinity, sodium and carbonate ion dominance. The pans are highly productive environments with picophytoplankton predominance. Little is known about the planktonic bacterial communities inhabiting these aquatic habitats; therefore, amplicon sequencing and shotgun metagenomics were applied to reveal their composition and functional properties. Results showed a taxonomically complex bacterial community which was distinct from other soda lakes regarding its composition, e.g. the dominance of class Alphaproteobacteria was observed within phylum Proteobacteria. The shotgun metagenomic analysis revealed several functional gene components related to the harsh and at the same time hypertrophic environmental conditions, e.g. proteins involved in stress response, transport and hydrolase systems targeting phytoplankton-derived organic matter. This is the first detailed report on the indigenous planktonic bacterial communities coping with the multiple extreme conditions present in the unique soda pans of the Pannonian steppe.
Collapse
Affiliation(s)
- Attila Szabó
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117, Budapest, Hungary
| | - Kristóf Korponai
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117, Budapest, Hungary
| | - Csaba Kerepesi
- Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI), Kende u. 13-17, 1111, Budapest, Hungary
| | - Boglárka Somogyi
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, 8237, Tihany, Hungary
| | - Lajos Vörös
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, 8237, Tihany, Hungary
| | - Dániel Bartha
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, 1143, Budapest, Hungary
| | - Károly Márialigeti
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117, Budapest, Hungary
| | - Tamás Felföldi
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117, Budapest, Hungary.
| |
Collapse
|
40
|
Berben T, Overmars L, Sorokin DY, Muyzer G. Comparative Genome Analysis of Three Thiocyanate Oxidizing Thioalkalivibrio Species Isolated from Soda Lakes. Front Microbiol 2017; 8:254. [PMID: 28293216 PMCID: PMC5328954 DOI: 10.3389/fmicb.2017.00254] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/07/2017] [Indexed: 12/21/2022] Open
Abstract
Thiocyanate is a C1 compound containing carbon, nitrogen, and sulfur. It is a (by)product in a number of natural and industrial processes. Because thiocyanate is toxic to many organisms, including humans, its removal from industrial waste streams is an important problem. Although a number of bacteria can use thiocyanate as a nitrogen source, only a few can use it as an electron donor. There are two distinct pathways to use thiocyanate: (i) the “carbonyl sulfide pathway,” which has been extensively studied, and (ii) the “cyanate pathway,” whose key enzyme, thiocyanate dehydrogenase, was recently purified and studied. Three species of Thioalkalivibrio, a group of haloalkaliphilic sulfur-oxidizing bacteria isolated from soda lakes, have been described as thiocyanate oxidizers: (i) Thioalkalivibrio paradoxus (“cyanate pathway”), (ii) Thioalkalivibrio thiocyanoxidans (“cyanate pathway”) and (iii) Thioalkalivibrio thiocyanodenitrificans (“carbonyl sulfide pathway”). In this study we provide a comparative genome analysis of these described thiocyanate oxidizers, with genomes ranging in size from 2.5 to 3.8 million base pairs. While focusing on thiocyanate degradation, we also analyzed the differences in sulfur, carbon, and nitrogen metabolism. We found that the thiocyanate dehydrogenase gene is present in 10 different Thioalkalivibrio strains, in two distinct genomic contexts/genotypes. The first genotype is defined by having genes for flavocytochrome c sulfide dehydrogenase upstream from the thiocyanate dehydrogenase operon (present in two strains including the type strain of Tv. paradoxus), whereas in the second genotype these genes are located downstream, together with two additional genes of unknown function (present in eight strains, including the type strains of Tv. thiocyanoxidans). Additionally, we found differences in the presence/absence of genes for various sulfur oxidation pathways, such as sulfide:quinone oxidoreductase, dissimilatory sulfite reductase, and sulfite dehydrogenase. One strain (Tv. thiocyanodenitrificans) lacks genes encoding a carbon concentrating mechanism and none of the investigated genomes were shown to contain known bicarbonate transporters. This study gives insight into the genomic variation of thiocyanate oxidizing bacteria and may lead to improvements in the application of these organisms in the bioremediation of industrial waste streams.
Collapse
Affiliation(s)
- Tom Berben
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam, Netherlands
| | - Lex Overmars
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam, Netherlands
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of SciencesMoscow, Russia; Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
41
|
Cheng B, Meng Y, Cui Y, Li C, Tao F, Yin H, Yang C, Xu P. Alkaline Response of a Halotolerant Alkaliphilic Halomonas Strain and Functional Diversity of Its Na+(K+)/H+ Antiporters. J Biol Chem 2016; 291:26056-26065. [PMID: 27777302 DOI: 10.1074/jbc.m116.751016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/13/2016] [Indexed: 11/06/2022] Open
Abstract
Halomonas sp. Y2 is a halotolerant alkaliphilic strain from Na+-rich pulp mill wastewater with high alkalinity (pH >11.0). Transcriptome analysis of this isolate revealed this strain may use various transport systems for pH homeostasis. In particular, the genes encoding four putative Na+/H+ antiporters were differentially expressed upon acidic or alkaline conditions. Further evidence, from heterologous expression and mutant studies, suggested that Halomonas sp. Y2 employs its Na+/H+ antiporters in a labor division way to deal with saline and alkaline environments. Ha-NhaD2 displayed robust Na+(Li+) resistance and high transport activities in Escherichia coli; a ΔHa-nhaD2 mutant exhibited growth inhibition at high Na+(Li+) concentrations at pH values of 6.2, 8.0, and 10.0, suggesting its physiological role in osmotic homeostasis. In contrast, Ha-NhaD1 showed much weaker activities in ion exporting and pH homeostasis. Ha-Mrp displayed a combination of properties similar to those of Mrp transporters from some Bacillus alkaliphiles and neutrophiles. This conferred obvious Na+(Li+, K+) resistance in E. coli-deficient strains, as those ion transport spectra of some neutrophil Mrp antiporters. Conversely, similar to the Bacillus alkaliphiles, Ha-Mrp showed central roles in the pH homeostasis of Halomonas sp. Y2. An Ha-mrp-disrupted mutant was seriously inhibited by high concentrations of Na+(Li+, K+) but only under alkaline conditions. Ha-NhaP was determined to be a K+/H+ antiporter and shown to confer strong K+ resistance both at acidic and alkaline stresses.
Collapse
Affiliation(s)
- Bin Cheng
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100 and
| | - Yiwei Meng
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100 and
| | - Yanbing Cui
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100 and
| | - Chunfang Li
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100 and
| | - Fei Tao
- the State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huijia Yin
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100 and
| | - Chunyu Yang
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100 and
| | - Ping Xu
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100 and.,the State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
42
|
Sousa JAB, Sorokin DY, Bijmans MFM, Plugge CM, Stams AJM. Ecology and application of haloalkaliphilic anaerobic microbial communities. Appl Microbiol Biotechnol 2015; 99:9331-6. [PMID: 26359181 PMCID: PMC4628080 DOI: 10.1007/s00253-015-6937-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/09/2015] [Accepted: 08/13/2015] [Indexed: 11/28/2022]
Abstract
Haloalkaliphilic microorganisms that grow optimally at high-pH and high-salinity conditions can be found in natural environments such as soda lakes. These globally spread lakes harbour interesting anaerobic microorganisms that have the potential of being applied in existing technologies or create new opportunities. In this review, we discuss the potential application of haloalkaliphilic anaerobic microbial communities in the fermentation of lignocellulosic feedstocks material subjected to an alkaline pre-treatment, methane production and sulfur removal technology. Also, the general advantages of operation at haloalkaline conditions, such as low volatile fatty acid and sulfide toxicity, are addressed. Finally, an outlook into the main challenges like ammonia toxicity and lack of aggregation is provided.
Collapse
Affiliation(s)
- João A B Sousa
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands. .,Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, the Netherlands.
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia. .,Department of Biotechnology, Delft University of Technology, 2628 BC, Delft, the Netherlands.
| | - Martijn F M Bijmans
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, the Netherlands.
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands. .,Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, the Netherlands.
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands. .,Department of Biological Engineering, University of Minho, Braga, Portugal.
| |
Collapse
|