1
|
Shen Y, Gong Z, Zhang S, Cao J, Mao W, Yao Y, Zhao J, Li Q, Liu K, Liu B, Feng S. Besides TLR2 and TLR4, NLRP3 is also involved in regulating Escherichia coli infection-induced inflammatory responses in mice. Int Immunopharmacol 2023; 121:110556. [PMID: 37364329 DOI: 10.1016/j.intimp.2023.110556] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
The host Toll-like Receptor-2 (TLR2) and Toll-like Receptor-4 (TLR4) play critical roles in defense against Escherichia coli (E. coli) infection is well-known. The NLR pyrin domain-containing 3 (NLRP3) inflammasome is also an important candidate during the host-recognized pathogen, while the roles of NLRP3 in the host inflammatory response to E. coli infection remains unclear. This study aimed to explore the roles of NLRP3 in regulating the inflammatory response in E. coli infection-induced mice. Our result indicated that compared to wild-type mice, the TLR2-deficient (TLR2-/-), TLR4-deficient (TLR4-/-), and NLRP3-deficient (NLRP3-/-) mice had significant decrease in liver damage after stimulation with Lipopolysaccharide (LPS, 1 μg/mL), Braun lipoprotein (BLP, 1 μg/mL), or infected by WT E. coli (1 × 107 CFU, MOI 5:1). Meanwhile, compared with wild-type mice, the TNF-α and IL-1β production in serum decreased in TLR2-/-, TLR4-/-, and NLRP3-/- mice after LPS, BLP treatment, or WT E. coli infection. In macrophages from NLRP3-/- mice showed significantly reduced secretion of TNF-α and IL-1β in response to stimulation with LPS, BLP, or WT E. coli infection compared with macrophages from wild-type mice. These results indicate that besides TLR2 and TLR4, NLRP3 also plays a critical role in host inflammatory responses to defense against E. coli infection, and might provide a therapeutic target in combating disease with bacterium infection.
Collapse
Affiliation(s)
- Yuan Shen
- Key Laboratory of Molecular Epidemiology of Chronic Diseases, School of Public Health, Inner Mongolia Medical University, No. 5, Xinhua Street, Hui Min District, 010000, Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot City, China
| | - Zhiguo Gong
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot City, China
| | - Shuangyi Zhang
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot City, China
| | - Jinshan Cao
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot City, China
| | - Wei Mao
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot City, China
| | - Yuan Yao
- Department of Neurology, Inner Mongolia People's Hospital, No. 20, Zhaowuda Road, Saihan District, 010017, Hohhot City, China
| | - Jiamin Zhao
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot City, China
| | - Qianru Li
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot City, China
| | - Kun Liu
- Key Laboratory of Molecular Epidemiology of Chronic Diseases, School of Public Health, Inner Mongolia Medical University, No. 5, Xinhua Street, Hui Min District, 010000, Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot City, China
| | - Bo Liu
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot City, China.
| | - Shuang Feng
- Laboratory of Veterinary Public Health, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011, Hohhot City, China.
| |
Collapse
|
2
|
Xu X, Wei Y, Pang J, Wei Z, Wang L, Chen Q, Wang Z, Zhang Y, Chen K, Peng Y, Zhang Z, Liu J, Zhang Y, Jin ZB, Liang Q. Time-Course Transcriptomic Analysis Reveals the Crucial Roles of PANoptosis in Fungal Keratitis. Invest Ophthalmol Vis Sci 2023; 64:6. [PMID: 36867131 PMCID: PMC9988702 DOI: 10.1167/iovs.64.3.6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Purpose Fungal keratitis (FK) is a serious corneal infection with high morbidity. Host immune responses function as a double-edged sword by eradicating fungal pathogens while also causing corneal damage, dictating the severity, progression, and outcome of FK. However, the underlying immunopathogenesis remains elusive. Methods Time-course transcriptome was performed to illustrate the dynamic immune landscape in a mouse model of FK. Integrated bioinformatic analyses included identification of differentially expressed genes, time series clustering, Gene Ontology enrichment, and inference of infiltrating immune cells. Gene expression was verified by quantitative polymerase chain reaction (qPCR), Western blot, or immunohistochemistry. Results FK mice exhibited dynamic immune responses with concerted trends with clinical score, transcriptional alteration, and immune cell infiltration score peaking at 3 days post infection (dpi). Disrupted substrate metabolism, broad immune activation, and corneal wound healing occurred sequentially in early, middle, and late stages of FK. Meanwhile, dynamics of infiltrating innate and adaptive immune cells displayed distinct characteristics. Proportions of dendritic cells showed overall decreasing trend with fungal infection, whereas that of macrophages, monocytes, and neutrophils rose sharply in early stage and then gradually decreased as inflammation resolved. Activation of adaptive immune cells was also observed in late stage of infection. Furthermore, shared immune responses and activation of AIM2-, pyrin-, and ZBP1-mediated PANoptosis were revealed across different time points. Conclusions Our study profiles the dynamic immune landscape and highlights the crucial roles of PANoptosis in FK pathogenesis. These findings provide novel insights into host responses to fungi and contribute to the development of PANoptosis-targeted therapeutics for patients with FK.
Collapse
Affiliation(s)
- Xizhan Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuan Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jinding Pang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhenyu Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Leying Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qiankun Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhiqun Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Kexin Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yan Peng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zijun Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jiamin Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuheng Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Montaño DE, Hartung S, Wich M, Ali R, Jungnickel B, von Lilienfeld-Toal M, Voigt K. The TLR-NF-kB axis contributes to the monocytic inflammatory response against a virulent strain of Lichtheimia corymbifera, a causative agent of invasive mucormycosis. Front Immunol 2022; 13:882921. [PMID: 36311802 PMCID: PMC9608459 DOI: 10.3389/fimmu.2022.882921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Invasive mucormycosis (IM) is a life-threatening infection caused by the fungal order Mucorales, its diagnosis is often delayed, and mortality rates range from 40-80% due to its rapid progression. Individuals suffering from hematological malignancies, diabetes mellitus, organ transplantations, and most recently COVID-19 are particularly susceptible to infection by Mucorales. Given the increase in the occurrence of these diseases, mucormycosis has emerged as one of the most common fungal infections in the last years. However, little is known about the host immune response to Mucorales. Therefore, we characterized the interaction among L. corymbifera—one of the most common causative agents of IM—and human monocytes, which are specialized phagocytes that play an instrumental role in the modulation of the inflammatory response against several pathogenic fungi. This study covered four relevant aspects of the host-pathogen interaction: i) The recognition of L. corymbifera by human monocytes. ii) The intracellular fate of L. corymbifera. iii) The inflammatory response by human monocytes against the most common causative agents of mucormycosis. iv) The main activated Pattern-Recognition Receptors (PRRs) inflammatory signaling cascades in response to L. corymbifera. Here, we demonstrate that L. corymbifera exhibits resistance to intracellular killing over 24 hours, does not germinate, and inflicts minimal damage to the host cell. Nonetheless, viable fungal spores of L. corymbifera induced early production of the pro-inflammatory cytokine IL-1β, and late release of TNF-α and IL-6 by human monocytes. Moreover, we revealed that IL-1β production predominantly depends on Toll-like receptors (TLRs) priming, especially via TLR4, while TNF-α is secreted via C-type lectin receptors (CTLs), and IL-6 is produced by synergistic activation of TLRs and CTLs. All these signaling pathways lead to the activation of NF-kB, a transcription factor that not only regulates the inflammatory response but also the apoptotic fate of monocytes during infection with L. corymbifera. Collectively, our findings provide new insights into the host-pathogen interactions, which may serve for future therapies to enhance the host inflammatory response to L. corymbifera.
Collapse
Affiliation(s)
- Dolly E. Montaño
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
- Jena Microbial Resource Collection, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Susann Hartung
- Infections in Hematology and Oncology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
| | - Melissa Wich
- Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, Germany
| | - Rida Ali
- Jena Microbial Resource Collection, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Berit Jungnickel
- Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, Germany
| | - Marie von Lilienfeld-Toal
- Infections in Hematology and Oncology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
- Department of Hematology and Medical Oncology, Jena University Hospital, Jena, Germany
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
- Jena Microbial Resource Collection, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
- *Correspondence: Kerstin Voigt,
| |
Collapse
|
4
|
Vlaia L, Olariu I, Muţ AM, Coneac G, Vlaia V, Anghel DF, Maxim ME, Stângă G, Dobrescu A, Suciu M, Szabadai Z, Lupuleasa D. New, Biocompatible, Chitosan-Gelled Microemulsions Based on Essential Oils and Sucrose Esters as Nanocarriers for Topical Delivery of Fluconazole. Pharmaceutics 2021; 14:75. [PMID: 35056971 PMCID: PMC8778122 DOI: 10.3390/pharmaceutics14010075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 01/11/2023] Open
Abstract
Biocompatible gel microemulsions containing natural origin excipients are promising nanocarrier systems for the safe and effective topical application of hydrophobic drugs, including antifungals. Recently, to improve fluconazole skin permeation, tolerability and therapeutic efficacy, we developed topical biocompatible microemulsions based on cinnamon, oregano or clove essential oil (CIN, ORG or CLV) as the oil phase and sucrose laurate (D1216) or sucrose palmitate (D1616) as surfactants, excipients also possessing intrinsic antifungal activity. To follow up this research, this study aimed to improve the adhesiveness of respective fluconazole microemulsions using chitosan (a biopolymer with intrinsic antifungal activity) as gellator and to evaluate the formulation variables' effect (composition and concentration of essential oil, sucrose ester structure) on the gel microemulsions' (MEGELs) properties. All MEGELs were evaluated for drug content, pH, rheological behavior, viscosity, spreadability, in vitro drug release and skin permeation and antifungal activity. The results showed that formulation variables determined distinctive changes in the MEGELs' properties, which were nevertheless in accordance with official requirements for semisolid preparations. The highest flux and release rate values and large diameters of the fungal growth inhibition zone were produced by formulations MEGEL-FZ-D1616-CIN 10%, MEGEL-FZ-D1216-CIN 10% and MEGEL-FZ-D1616-ORG 10%. In conclusion, these MEGELs were demonstrated to be effective platforms for fluconazole topical delivery.
Collapse
Affiliation(s)
- Lavinia Vlaia
- Department II—Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (L.V.); (I.O.); (A.M.M.); (G.C.)
| | - Ioana Olariu
- Department II—Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (L.V.); (I.O.); (A.M.M.); (G.C.)
| | - Ana Maria Muţ
- Department II—Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (L.V.); (I.O.); (A.M.M.); (G.C.)
| | - Georgeta Coneac
- Department II—Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (L.V.); (I.O.); (A.M.M.); (G.C.)
| | - Vicenţiu Vlaia
- Department I—Organic Chemistry, Formulation and Technology of Drugs Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Dan Florin Anghel
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, Laboratory of Colloid Chemistry, 060021 Bucharest, Romania; (D.F.A.); (M.E.M.); (G.S.)
| | - Monica Elisabeta Maxim
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, Laboratory of Colloid Chemistry, 060021 Bucharest, Romania; (D.F.A.); (M.E.M.); (G.S.)
| | - Gabriela Stângă
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, Laboratory of Colloid Chemistry, 060021 Bucharest, Romania; (D.F.A.); (M.E.M.); (G.S.)
| | - Amadeus Dobrescu
- Department X Surgery 2–Surgery 2, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Maria Suciu
- Department II—Pharmacology and Pharmacotherapy, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Zoltan Szabadai
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timişoara, Romania;
| | - Dumitru Lupuleasa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| |
Collapse
|
5
|
Ali MD, Patel M, Banu N, Ahmad A, Hassan YA. A retrospective study on drug utilization pattern and cost utility analysis of antifungal drugs. JOURNAL OF PHARMACEUTICAL HEALTH SERVICES RESEARCH 2021. [DOI: 10.1093/jphsr/rmaa023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
Fungal infections in humans are superficial or systemic and are found to be life threatening. They are common among the middle age group and particularly in females and immunocompromised patients.
Methods
This study was conducted to evaluate the prescription pattern of antifungal drugs and their economic burden on patients. The study was designed as a single centered, cross-sectional retrospective pharmacy database study of utilization of antifungal drug therapy and their cost analysis. Data for the period from 1 January 2019 to 31 December 2019 were retrieved from the inpatients and outpatient electronic pharmacy records along with the unit dose prices of antifungal drug in the study hospital.
Key findings
Antifungals use was more among females (67.05%) compared with males (34.91%). The use was predominant among middle age group (31–45) with Clotrimazole being the most utilized lower cost topical drug and fluconazole the next preferred systemic drug with least toxicity. Variconazole is a novel drug utilized the least among all age groups due to its adverse effects and higher cost. Clotrimazole is the drug of choice topically due to low cost and lesser absorption orally. Fluconazole is the next preferred drug that can be given systemically and its use remain unchanged due to lower cost and least toxicity in immunocompromised patients.
Conclusions
Variconazole although have adverse effects and used rarely it is the drug preferred in invasive treatments when benefit outweighs the risk. Variconazole is highly expensive drug used in invasive treatments and its adverse drug reactions, and cost need to be monitored.
Collapse
Affiliation(s)
- Mohammad Daud Ali
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam, Saudi Arabia
| | - Munfis Patel
- Foundation Year Department, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam, Saudi Arabia
| | - Nuzhat Banu
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam, Saudi Arabia
| | - Ayaz Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam, Saudi Arabia
| | - Yousif Amin Hassan
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam, Saudi Arabia
| |
Collapse
|
6
|
Banoth B, Tuladhar S, Karki R, Sharma BR, Briard B, Kesavardhana S, Burton A, Kanneganti TD. ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis). J Biol Chem 2020; 295:18276-18283. [PMID: 33109609 PMCID: PMC7939383 DOI: 10.1074/jbc.ra120.015924] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/08/2020] [Indexed: 01/13/2023] Open
Abstract
Candida albicans and Aspergillus fumigatus are dangerous fungal pathogens with high morbidity and mortality, particularly in immunocompromised patients. Innate immune-mediated programmed cell death (pyroptosis, apoptosis, necroptosis) is an integral part of host defense against pathogens. Inflammasomes, which are canonically formed upstream of pyroptosis, have been characterized as key mediators of fungal sensing and drivers of proinflammatory responses. However, the specific cell death pathways and key upstream sensors activated in the context of Candida and Aspergillus infections are unknown. Here, we report that C. albicans and A. fumigatus infection induced inflammatory programmed cell death in the form of pyroptosis, apoptosis, and necroptosis (PANoptosis). Further, we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as the apical sensor of fungal infection responsible for activating the inflammasome/pyroptosis, apoptosis, and necroptosis. The Zα2 domain of ZBP1 was required to promote this inflammasome activation and PANoptosis. Overall, our results demonstrate that C. albicans and A. fumigatus induce PANoptosis and that ZBP1 plays a vital role in inflammasome activation and PANoptosis in response to fungal pathogens.
Collapse
Affiliation(s)
- Balaji Banoth
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shraddha Tuladhar
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Benoit Briard
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sannula Kesavardhana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Amanda Burton
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
7
|
Wang X, Caffrey-Carr AK, Liu KW, Espinosa V, Croteau W, Dhingra S, Rivera A, Cramer RA, Obar JJ. MDA5 Is an Essential Sensor of a Pathogen-Associated Molecular Pattern Associated with Vitality That Is Necessary for Host Resistance against Aspergillus fumigatus. THE JOURNAL OF IMMUNOLOGY 2020; 205:3058-3070. [PMID: 33087405 DOI: 10.4049/jimmunol.2000802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
RIG-I-like receptors (RLR) are cytosolic RNA sensors that signal through the MAVS adaptor to activate IFN responses against viruses. Whether the RLR family has broader effects on host immunity against other pathogen families remains to be fully explored. In this study, we demonstrate that MDA5/MAVS signaling was essential for host resistance against pulmonary Aspergillus fumigatus challenge through the regulation of antifungal leukocyte responses in mice. Activation of MDA5/MAVS signaling was driven by dsRNA from live A. fumigatus serving as a key vitality-sensing pattern recognition receptor. Interestingly, induction of type I IFNs after A. fumigatus challenge was only partially dependent on MDA5/MAVS signaling, whereas type III IFN expression was entirely dependent on MDA5/MAVS signaling. Ultimately, type I and III IFN signaling drove the expression of CXCL10. Furthermore, the MDA5/MAVS-dependent IFN response was critical for the induction of optimal antifungal neutrophil killing of A. fumigatus spores. In conclusion, our data broaden the role of the RLR family to include a role in regulating antifungal immunity against A. fumigatus.
Collapse
Affiliation(s)
- Xi Wang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Alayna K Caffrey-Carr
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718; and
| | - Ko-Wei Liu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Vanessa Espinosa
- Center for Immunity and Inflammation, Rutgers - New Jersey Medical School, Newark, NJ 07103
| | - Walburga Croteau
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Amariliz Rivera
- Center for Immunity and Inflammation, Rutgers - New Jersey Medical School, Newark, NJ 07103
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Joshua J Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756;
| |
Collapse
|
8
|
Host Immune Defense upon Fungal Infections with Mucorales: Pathogen-Immune Cell Interactions as Drivers of Inflammatory Responses. J Fungi (Basel) 2020; 6:jof6030173. [PMID: 32957440 PMCID: PMC7557740 DOI: 10.3390/jof6030173] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
During the last few decades, mucormycosis has emerged as one of the most common fungal infections, following candidiasis and aspergillosis. The fungal order responsible for causing mucormycosis is the Mucorales. The main hallmarks of this infection include the invasion of blood vessels, infarction, thrombosis, and tissue necrosis, which are exhibited at the latest stages of the infection. Therefore, the diagnosis is often delayed, and the rapid progression of the infection severely endangers the life of people suffering from diabetes mellitus, hematological malignancies, or organ transplantation. Given the fact that mortality rates for mucormycosis range from 40 to 80%, early diagnosis and novel therapeutic strategies are urgently needed to battle the infection. However, compared to other fungal infections, little is known about the host immune response against Mucorales and the influence of inflammatory processes on the resolution of the infection. Hence, in this review, we summarized our current understanding of the interplay among pro-inflammatory cytokines, chemokines, and the host-immune cells in response to mucoralean fungi, as well as their potential use for immunotherapies.
Collapse
|
9
|
Mba IE, Nweze EI. Mechanism of Candida pathogenesis: revisiting the vital drivers. Eur J Clin Microbiol Infect Dis 2020; 39:1797-1819. [PMID: 32372128 DOI: 10.1007/s10096-020-03912-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Candida is the most implicated fungal pathogen in the clinical setting. Several factors play important roles in the pathogenesis of Candida spp. Multiple transcriptional circuits, morphological and phenotypic switching, biofilm formation, tissue damaging extracellular hydrolytic enzymes, metabolic flexibility, genome plasticity, adaptation to environmental pH fluctuation, robust nutrient acquisition system, adherence and invasions (mediated by adhesins and invasins), heat shock proteins (HSPs), cytolytic proteins, escape from phagocytosis, evasion from host immune system, synergistic coaggregation with resident microbiota, resistance to antifungal agents, and the ability to efficiently respond to multiple stresses are some of the major pathogenic determinants of Candida species. The existence of multiple connections, in addition to the interactions and associations among all of these factors, are distinctive features that play important roles in the establishment of Candida infections. This review describes all the underlying factors and mechanisms involved in Candida pathogenesis by evaluating pathogenic determinants of Candida species. It reinforces the already available pool of data on the pathogenesis of Candida species by providing a clear and simplified understanding of the most important factors implicated in the pathogenesis of Candida species. The Candida pathogenesis network, an illustration linking all the major determinants of Candida pathogenesis, is also presented. Taken together, they will further improve our current understanding of how these factors modulate virulence and consequent infection(s). Development of new antifungal drugs and better therapeutic approaches to candidiasis can be achieved in the near future with continuing progress in the understanding of the mechanisms of Candida pathogenesis.
Collapse
|
10
|
Kay JG, Kramer JM, Visser MB. Danger signals in oral cavity-related diseases. J Leukoc Biol 2019; 106:193-200. [PMID: 30776147 DOI: 10.1002/jlb.4mir1118-439r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 02/06/2023] Open
Abstract
The oral cavity is a unique environment containing teeth juxtaposed with soft tissues, all of which are constantly bathed in microbial products and host-derived factors. While microbial dysbiosis in the oral cavity clearly leads to oral inflammatory disease, recent advances find that endogenous danger-associated molecular patterns (DAMPs) released from oral and salivary tissue also contribute to the progression of inflammatory and autoimmune disease, respectively. In contrast, DAMPs produced during oral fungal infection actually promote the resolution of infection. Here, we present a review of the literature suggesting a role for signaling by DAMPs, which may intersect with pathogen-associated molecular pattern (PAMP) signaling, in diseases that manifest in the oral cavity, specifically periodontal disease, oropharyngeal candidiasis, and Sjögren's syndrome.
Collapse
Affiliation(s)
- Jason G Kay
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York, USA
| | - Jill M Kramer
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York, USA
| | - Michelle B Visser
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
11
|
|
12
|
Modulation of the Fungal-Host Interaction by the Intra-Species Diversity of C. albicans. Pathogens 2018; 7:pathogens7010011. [PMID: 29342100 PMCID: PMC5874737 DOI: 10.3390/pathogens7010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/09/2023] Open
Abstract
The incidence of human infections caused by the opportunistic fungal pathogen Candida albicans is on the rise due to increasing numbers of immunosuppressed patients. The importance of the immune system in preventing overgrowth of the colonizing fungus and thereby limiting infection is well recognized and host protective mechanisms widely investigated. Only recently, it was recognized that the natural diversity in the fungal species could also influence the outcome of the interaction between the fungus and the host. C. albicans strain-specific differences are complex and their regulation at the genomic, genetic, and epigenetic level and by environmental factors is only partially understood. In this review, we provide an overview of the natural diversity of C. albicans and discuss how it impacts host-fungal interactions and thereby affects the balance between commensalism versus disease.
Collapse
|
13
|
Caffrey-Carr AK, Kowalski CH, Beattie SR, Blaseg NA, Upshaw CR, Thammahong A, Lust HE, Tang YW, Hohl TM, Cramer RA, Obar JJ. Interleukin 1α Is Critical for Resistance against Highly Virulent Aspergillus fumigatus Isolates. Infect Immun 2017; 85:e00661-17. [PMID: 28947643 PMCID: PMC5695118 DOI: 10.1128/iai.00661-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 02/08/2023] Open
Abstract
Heterogeneity among Aspergillus fumigatus isolates results in unique virulence potential and inflammatory responses. How these isolates drive specific immune responses and how this affects fungally induced lung damage and disease outcome are unresolved. We demonstrate that the highly virulent CEA10 strain is able to rapidly germinate within the immunocompetent lung environment, inducing greater lung damage, vascular leakage, and interleukin 1α (IL-1α) release than the low-virulence Af293 strain, which germinates with a lower frequency in this environment. Importantly, the clearance of CEA10 was consequently dependent on IL-1α, in contrast to Af293. The release of IL-1α occurred by a caspase 1/11- and P2XR7-independent mechanism but was dependent on calpain activity. Our finding that early fungal conidium germination drives greater lung damage and IL-1α-dependent inflammation is supported by three independent experimental lines. First, pregermination of Af293 prior to in vivo challenge drives greater lung damage and an IL-1α-dependent neutrophil response. Second, the more virulent EVOL20 strain, derived from Af293, is able to germinate in the airways, leading to enhanced lung damage and IL-1α-dependent inflammation and fungal clearance. Third, primary environmental A. fumigatus isolates that rapidly germinate under airway conditions follow the same trend toward IL-1α dependency. Our data support the hypothesis that A. fumigatus phenotypic variation significantly contributes to disease outcomes.
Collapse
Affiliation(s)
- Alayna K Caffrey-Carr
- Montana State University, Department of Microbiology and Immunology, Bozeman, Montana, USA
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| | - Caitlin H Kowalski
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| | - Sarah R Beattie
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| | - Nathan A Blaseg
- Montana State University, Department of Microbiology and Immunology, Bozeman, Montana, USA
| | | | - Arsa Thammahong
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| | - Hannah E Lust
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| | - Yi-Wei Tang
- Department of Laboratory Medicine, Clinical Microbiology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tobias M Hohl
- Department of Medicine, Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert A Cramer
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| | - Joshua J Obar
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| |
Collapse
|
14
|
Souza ACO, Amaral AC. Antifungal Therapy for Systemic Mycosis and the Nanobiotechnology Era: Improving Efficacy, Biodistribution and Toxicity. Front Microbiol 2017; 8:336. [PMID: 28326065 PMCID: PMC5340099 DOI: 10.3389/fmicb.2017.00336] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/17/2017] [Indexed: 01/11/2023] Open
Abstract
Fungal diseases have been emerging as an important public health problem worldwide with the increase in host predisposition factors due to immunological dysregulations, immunosuppressive and/or anticancer therapy. Antifungal therapy for systemic mycosis is limited, most of times expensive and causes important toxic effects. Nanotechnology has become an interesting strategy to improve efficacy of traditional antifungal drugs, which allows lower toxicity, better biodistribution, and drug targeting, with promising results in vitro and in vivo. In this review, we provide a discussion about conventional antifungal and nanoantifungal therapies for systemic mycosis.
Collapse
Affiliation(s)
- Ana C. O. Souza
- Laboratory of Pathogenic Dimorphic Fungi, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
| | - Andre C. Amaral
- Laboratory of Nano and Biotechnology, Institute of Tropical Pathology and Public Health, Federal University of GoiásGoiânia, Brazil
| |
Collapse
|
15
|
Al Balushi KA, Alzaabi MA, Alghafri F. Prescribing Pattern of Antifungal Medications at a Tertiary Care Hospital in Oman. J Clin Diagn Res 2016; 10:FC27-FC30. [PMID: 28208876 DOI: 10.7860/jcdr/2016/23591.9005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Inappropriate use of antifungal agents is implicated in the global burden of antifungal resistance, adverse outcomes like persistent infections, unnecessary exposure and increased cost. Data collection from time to time is to be done in order to have a check on the resistance/sensitivity pattern of the commonly prescribed antifungal drugs. AIM To describe the pattern of antifungal drug prescription and administration to patients attending a university hospital in Oman. MATERIALS AND METHODS This was a descriptive, retrospective cross-sectional study conducted at Sultan Qaboos University Hospital (SQUH), a university hospital in Oman that covered the electronic patient's data for a period of one year (January 2013 to December 2013). The study included inpatients and outpatients of all ages and both genders attending SQUH and receiving antifungal medications at the study period. Frequencies and percentages were reported for categorical variables, while the mean and standard deviation were used to summarize the data for continuous variables. RESULTS A total of 1353 antifungal drug prescriptions were prescribed for 244 patients. More than half of all antifungal drug prescriptions were prescribed by haematology, infectious disease and family medicine departments. The majority of patients to whom these drugs were prescribed were diagnosed to have infectious diseases followed by prophylactic use in leukaemias and immunocompromised conditions. Fluconazole was the most commonly prescribed antifungal drug (n=715, 52.8%) followed by nystatin and voriconazole (n=233; 17.2% and n=152; 11.2%, respectively). CONCLUSION This study will help in understanding antifungal prescription practices and help in directing future studies and also in developing local policies for appropriate use of antifungal drugs.
Collapse
Affiliation(s)
- Khalid A Al Balushi
- Associate Professor, Department of Pharmacology and Clinical Pharmacy, Sultan Qaboos University , Al Khodh, Oman
| | - Mohammed A Alzaabi
- Associate Professor, Department of Pharmacology and Clinical Pharmacy, Sultan Qaboos University , Al Khodh, Oman
| | - Fatma Alghafri
- Biomedical Scientist, Department of Pathology, Sultan Qaboos University , Al Khodh, Oman
| |
Collapse
|
16
|
Thomma BP, Bignell E. Editorial overview: The fungal infection arena in animal and plant hosts: dynamics at the interface. Curr Opin Microbiol 2016; 32:v-vii. [PMID: 27422760 DOI: 10.1016/j.mib.2016.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Bart Phj Thomma
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Elaine Bignell
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.
| |
Collapse
|