1
|
Mateo-Cáceres V, Redrejo-Rodríguez M. Pipolins are bimodular platforms that maintain a reservoir of defense systems exchangeable with various bacterial genetic mobile elements. Nucleic Acids Res 2024; 52:12498-12516. [PMID: 39404074 DOI: 10.1093/nar/gkae891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 11/12/2024] Open
Abstract
Defense genes gather in diverse types of genomic islands in bacteria and provide immunity against viruses and other genetic mobile elements. Here, we disclose pipolins, previously found in diverse bacterial phyla and encoding a primer-independent PolB, as a new category of widespread defense islands. The analysis of the occurrence and structure of pipolins revealed that they are commonly integrative elements flanked by direct repeats in Gammaproteobacteria genomes, mainly Escherichia, Vibrio or Aeromonas, often taking up known mobile elements integration hotspots. Remarkably, integrase dynamics correlates with alternative integration spots and enables diverse lifestyles, from integrative to mobilizable and plasmid pipolins, such as in members of the genera Limosilactobacillus, Pseudosulfitobacter or Staphylococcus. Pipolins harbor a minimal core and a large cargo module enriched for defense factors. In addition, analysis of the weighted gene repertoire relatedness revealed that many of these defense factors are actively exchanged with other mobile elements. These findings indicate pipolins and, potentially other defense islands, act as orthogonal reservoirs of defense genes, potentially transferable to immune autonomous MGEs, suggesting complementary exchange mechanisms for defense genes in bacterial populations.
Collapse
Affiliation(s)
- Víctor Mateo-Cáceres
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Modesto Redrejo-Rodríguez
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| |
Collapse
|
2
|
Koonin EV, Fischer MG, Kuhn JH, Krupovic M. The polinton-like supergroup of viruses: evolution, molecular biology, and taxonomy. Microbiol Mol Biol Rev 2024; 88:e0008623. [PMID: 39023254 PMCID: PMC11426020 DOI: 10.1128/mmbr.00086-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
SUMMARYPolintons are 15-20 kb-long self-synthesizing transposons that are widespread in eukaryotic, and in particular protist, genomes. Apart from a transposase and a protein-primed DNA polymerase, polintons encode homologs of major and minor jelly-roll capsid proteins, DNA-packaging ATPases, and proteases involved in capsid maturation of diverse eukaryotic viruses of kingdom Bamfordvirae. Given the conservation of these structural and morphogenetic proteins among polintons, these elements are predicted to alternate between transposon and viral lifestyles and, although virions have thus far not been detected, are classified as viruses (class Polintoviricetes) in the phylum Preplasmiviricota. Related to polintoviricetes are vertebrate adenovirids; unclassified polinton-like viruses (PLVs) identified in various environments or integrated into diverse protist genomes; virophages (Maveriviricetes), which are part of tripartite hyperparasitic systems including protist hosts and giant viruses; and capsid-less derivatives, such as cytoplasmic linear DNA plasmids of fungi and transpovirons. Phylogenomic analysis indicates that the polinton-like supergroup of viruses bridges bacterial tectivirids (preplasmiviricot class Tectiliviricetes) to the phylum Nucleocytoviricota that includes large and giant eukaryotic DNA viruses. Comparative structural analysis of proteins encoded by polinton-like viruses led to the discovery of previously undetected functional domains, such as terminal proteins and distinct proteases implicated in DNA polymerase processing, and clarified the evolutionary relationships within Polintoviricetes. Here, we leverage these insights into the evolution of the polinton-like supergroup to develop an amended megataxonomy that groups Polintoviricetes, PLVs (new class 'Aquintoviricetes'), and virophages (renamed class 'Virophaviricetes') together with Adenoviridae (new class 'Pharingeaviricetes') in a preplasmiviricot subphylum 'Polisuviricotina' sister to a subphylum including Tectiliviricetes ('Prepoliviricotina').
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthias G Fischer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| |
Collapse
|
3
|
P P, Riyaz A, Choudhury A, Choudhury PR, Pradhan N, Singh A, Nakul M, Dudeja C, Yadav A, Nath SK, Khanna V, Sharma T, Pradhan G, Takkar S, Rawal K. DNASCANNER v2: A Web-Based Tool to Analyze the Characteristic Properties of Nucleotide Sequences. J Comput Biol 2024; 31:651-669. [PMID: 38662479 DOI: 10.1089/cmb.2023.0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Throughout the process of evolution, DNA undergoes the accumulation of distinct mutations, which can often result in highly organized patterns that serve various essential biological functions. These patterns encompass various genomic elements and provide valuable insights into the regulatory and functional aspects of DNA. The physicochemical, mechanical, thermodynamic, and structural properties of DNA sequences play a crucial role in the formation of specific patterns. These properties contribute to the three-dimensional structure of DNA and influence their interactions with proteins, regulatory elements, and other molecules. In this study, we introduce DNASCANNER v2, an advanced version of our previously published algorithm DNASCANNER for analyzing DNA properties. The current tool is built using the FLASK framework in Python language. Featuring a user-friendly interface tailored for nonspecialized researchers, it offers an extensive analysis of 158 DNA properties, including mono/di/trinucleotide frequencies, structural, physicochemical, thermodynamics, and mechanical properties of DNA sequences. The tool provides downloadable results and offers interactive plots for easy interpretation and comparison between different features. We also demonstrate the utility of DNASCANNER v2 in analyzing splice-site junctions, casposon insertion sequences, and transposon insertion sites (TIS) within the bacterial and human genomes, respectively. We also developed a deep learning module for the prediction of potential TIS in a given nucleotide sequence. In the future, we aim to optimize the performance of this prediction model through extensive training on larger data sets.
Collapse
Affiliation(s)
- Preeti P
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Azeen Riyaz
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Alakto Choudhury
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Priyanka Ray Choudhury
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Nischal Pradhan
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Abhishek Singh
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Mihir Nakul
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Chhavi Dudeja
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Abhijeet Yadav
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Swarsat Kaushik Nath
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Vrinda Khanna
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Trapti Sharma
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Gayatri Pradhan
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Simran Takkar
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Kamal Rawal
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
4
|
Beamud B, Benz F, Bikard D. Going viral: The role of mobile genetic elements in bacterial immunity. Cell Host Microbe 2024; 32:804-819. [PMID: 38870898 DOI: 10.1016/j.chom.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
Bacteriophages and other mobile genetic elements (MGEs) pose a significant threat to bacteria, subjecting them to constant attacks. In response, bacteria have evolved a sophisticated immune system that employs diverse defensive strategies and mechanisms. Remarkably, a growing body of evidence suggests that most of these defenses are encoded by MGEs themselves. This realization challenges our traditional understanding of bacterial immunity and raises intriguing questions about the evolutionary forces at play. Our review provides a comprehensive overview of the latest findings on the main families of MGEs and the defense systems they encode. We also highlight how a vast diversity of defense systems remains to be discovered and their mechanism of mobility understood. Altogether, the composition and distribution of defense systems in bacterial genomes only makes sense in the light of the ecological and evolutionary interactions of a complex network of MGEs.
Collapse
Affiliation(s)
- Beatriz Beamud
- Institut Pasteur, Université de Paris, Synthetic Biology, 75015 Paris, France.
| | - Fabienne Benz
- Institut Pasteur, Université de Paris, Synthetic Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, 75015 Paris, France
| | - David Bikard
- Institut Pasteur, Université de Paris, Synthetic Biology, 75015 Paris, France.
| |
Collapse
|
5
|
Krupovic M, Kuhn JH, Fischer MG, Koonin EV. Natural history of eukaryotic DNA viruses with double jelly-roll major capsid proteins. Proc Natl Acad Sci U S A 2024; 121:e2405771121. [PMID: 38805295 PMCID: PMC11161782 DOI: 10.1073/pnas.2405771121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
The phylum Preplasmiviricota (kingdom Bamfordvirae, realm Varidnaviria) is a broad assemblage of diverse viruses with comparatively short double-stranded DNA genomes (<50 kbp) that produce icosahedral capsids built from double jelly-roll major capsid proteins. Preplasmiviricots infect hosts from all cellular domains, testifying to their ancient origin, and, in particular, are associated with six of the seven supergroups of eukaryotes. Preplasmiviricots comprise four major groups of viruses, namely, polintons, polinton-like viruses (PLVs), virophages, and adenovirids. We used protein structure modeling and analysis to show that protein-primed DNA polymerases (pPolBs) of polintons, virophages, and cytoplasmic linear plasmids encompass an N-terminal domain homologous to the terminal proteins (TPs) of prokaryotic PRD1-like tectivirids and eukaryotic adenovirids that are involved in protein-primed replication initiation, followed by a viral ovarian tumor-like cysteine deubiquitinylase (vOTU) domain. The vOTU domain is likely responsible for the cleavage of the TP from the large pPolB polypeptide and is inactivated in adenovirids, in which TP is a separate protein. Many PLVs and transpovirons encode a distinct derivative of polinton-like pPolB that retains the TP, vOTU, and pPolB polymerization palm domains but lacks the exonuclease domain and instead contains a superfamily 1 helicase domain. Analysis of the presence/absence and inactivation of the vOTU domains and replacement of pPolB with other DNA polymerases in eukaryotic preplasmiviricots enabled us to outline a complete scenario for their origin and evolution.
Collapse
Affiliation(s)
- Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, Paris75015, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, NIH, Fort Detrick, Frederick, MD21702
| | - Matthias G. Fischer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| |
Collapse
|
6
|
Ganguly C, Rostami S, Long K, Aribam SD, Rajan R. Unity among the diverse RNA-guided CRISPR-Cas interference mechanisms. J Biol Chem 2024; 300:107295. [PMID: 38641067 PMCID: PMC11127173 DOI: 10.1016/j.jbc.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are adaptive immune systems that protect bacteria and archaea from invading mobile genetic elements (MGEs). The Cas protein-CRISPR RNA (crRNA) complex uses complementarity of the crRNA "guide" region to specifically recognize the invader genome. CRISPR effectors that perform targeted destruction of the foreign genome have emerged independently as multi-subunit protein complexes (Class 1 systems) and as single multi-domain proteins (Class 2). These different CRISPR-Cas systems can cleave RNA, DNA, and protein in an RNA-guided manner to eliminate the invader, and in some cases, they initiate programmed cell death/dormancy. The versatile mechanisms of the different CRISPR-Cas systems to target and destroy nucleic acids have been adapted to develop various programmable-RNA-guided tools and have revolutionized the development of fast, accurate, and accessible genomic applications. In this review, we present the structure and interference mechanisms of different CRISPR-Cas systems and an analysis of their unified features. The three types of Class 1 systems (I, III, and IV) have a conserved right-handed helical filamentous structure that provides a backbone for sequence-specific targeting while using unique proteins with distinct mechanisms to destroy the invader. Similarly, all three Class 2 types (II, V, and VI) have a bilobed architecture that binds the RNA-DNA/RNA hybrid and uses different nuclease domains to cleave invading MGEs. Additionally, we highlight the mechanistic similarities of CRISPR-Cas enzymes with other RNA-cleaving enzymes and briefly present the evolutionary routes of the different CRISPR-Cas systems.
Collapse
Affiliation(s)
- Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Kole Long
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Swarmistha Devi Aribam
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|
7
|
Zheng C, Liang H, Dai L, Yu J, Long C. Dissecting the CRISPR Cas1-Cas2 Protospacer Binding and Selection Mechanism by Using Molecular Dynamics Simulations. J Phys Chem B 2024; 128:3563-3574. [PMID: 38573978 DOI: 10.1021/acs.jpcb.3c07320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Cas1 and Cas2 are highly conserved proteins among the clustered regularly interspaced short palindromic repeat Cas (CRISPR-Cas) systems and play a crucial role in protospacer selection and integration. According to the double-forked CRISPR Cas1-Cas2 complex, we conducted extensive all-atom molecular dynamics simulations to investigate the protospacer DNA binding and recognition. Our findings revealed that single-point amino acid mutations in Cas1 or in Cas2 had little impact on the binding of the protospacer, both in the binding and precatalytic states. In contrast, multiple-point amino acid mutations, particularly G74A, P80L, and V89A mutations on Cas2 and Cas2' proteins (m-multiple1 system), significantly affected the protospacer binding and selection. Notably, mutations on Cas2 and Cas2' led to an increased number of hydrogen bonds (#HBs) between Cas2&Cas2' and the dsDNA in the m-multiple1 system compared with the wild-type system. And the strong electrostatic interactions between Cas1-Cas2 and the protospacer DNA (psDNA) in the m-multiple1 system again suggested the increase in the binding affinity of protospacer acquisition. Specifically, mutations in Cas2 and Cas2' can remotely make the protospacer adjacent motif complementary (PAMc) sequences better in recognition by the two active sites, while multiple mutations K211E, P202Q, P212L, R138L, V134A, A286T, P282H, and P294H on Cas1a/Cas1b&Cas1a'/Cas1b' (m-multiple2 system) decrease the #HBs and the electrostatic interactions and make the PAMc worse in recognition compared with the wild-type system.
Collapse
Affiliation(s)
- Chuanbo Zheng
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Hongqiong Liang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Liqiang Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Jin Yu
- Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697, United States
| | - Chunhong Long
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
8
|
Sudhakar S, Barkau CL, Chilamkurthy R, Barber HM, Pater AA, Moran SD, Damha MJ, Pradeepkumar PI, Gagnon KT. Binding to the conserved and stably folded guide RNA pseudoknot induces Cas12a conformational changes during ribonucleoprotein assembly. J Biol Chem 2023; 299:104700. [PMID: 37059184 PMCID: PMC10200996 DOI: 10.1016/j.jbc.2023.104700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023] Open
Abstract
Ribonucleoproteins (RNPs) comprise one or more RNA and protein molecules that interact to form a stable complex, which commonly involves conformational changes in the more flexible RNA components. Here, we propose that Cas12a RNP assembly with its cognate CRISPR RNA (crRNA) guide instead proceeds primarily through Cas12a conformational changes during binding to more stable, prefolded crRNA 5' pseudoknot handles. Phylogenetic reconstructions and sequence and structure alignments revealed that the Cas12a proteins are divergent in sequence and structure while the crRNA 5' repeat region, which folds into a pseudoknot and anchors binding to Cas12a, is highly conserved. Molecular dynamics simulations of three Cas12a proteins and their cognate guides revealed substantial flexibility for unbound apo-Cas12a. In contrast, crRNA 5' pseudoknots were predicted to be stable and independently folded. Limited trypsin hydrolysis, differential scanning fluorimetry, thermal denaturation, and CD analyses supported conformational changes of Cas12a during RNP assembly and an independently folded crRNA 5' pseudoknot. This RNP assembly mechanism may be rationalized by evolutionary pressure to conserve CRISPR loci repeat sequence, and therefore guide RNA structure, to maintain function across all phases of the CRISPR defense mechanism.
Collapse
Affiliation(s)
- Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Christopher L Barkau
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois, USA
| | - Ramadevi Chilamkurthy
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois, USA
| | - Halle M Barber
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Adrian A Pater
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois, USA
| | - Sean D Moran
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| | - Keith T Gagnon
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois, USA; Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois, USA.
| |
Collapse
|
9
|
Oliveira LS, Reyes A, Dutilh BE, Gruber A. Rational Design of Profile HMMs for Sensitive and Specific Sequence Detection with Case Studies Applied to Viruses, Bacteriophages, and Casposons. Viruses 2023; 15:519. [PMID: 36851733 PMCID: PMC9966878 DOI: 10.3390/v15020519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Profile hidden Markov models (HMMs) are a powerful way of modeling biological sequence diversity and constitute a very sensitive approach to detecting divergent sequences. Here, we report the development of protocols for the rational design of profile HMMs. These methods were implemented on TABAJARA, a program that can be used to either detect all biological sequences of a group or discriminate specific groups of sequences. By calculating position-specific information scores along a multiple sequence alignment, TABAJARA automatically identifies the most informative sequence motifs and uses them to construct profile HMMs. As a proof-of-principle, we applied TABAJARA to generate profile HMMs for the detection and classification of two viral groups presenting different evolutionary rates: bacteriophages of the Microviridae family and viruses of the Flavivirus genus. We obtained conserved models for the generic detection of any Microviridae or Flavivirus sequence, and profile HMMs that can specifically discriminate Microviridae subfamilies or Flavivirus species. In another application, we constructed Cas1 endonuclease-derived profile HMMs that can discriminate CRISPRs and casposons, two evolutionarily related transposable elements. We believe that the protocols described here, and implemented on TABAJARA, constitute a generic toolbox for generating profile HMMs for the highly sensitive and specific detection of sequence classes.
Collapse
Affiliation(s)
- Liliane S. Oliveira
- Department of Parasitology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | - Alejandro Reyes
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Bas E. Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, 07743 Jena, Germany
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Arthur Gruber
- Department of Parasitology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| |
Collapse
|
10
|
Hackl T, Laurenceau R, Ankenbrand MJ, Bliem C, Cariani Z, Thomas E, Dooley KD, Arellano AA, Hogle SL, Berube P, Leventhal GE, Luo E, Eppley JM, Zayed AA, Beaulaurier J, Stepanauskas R, Sullivan MB, DeLong EF, Biller SJ, Chisholm SW. Novel integrative elements and genomic plasticity in ocean ecosystems. Cell 2023; 186:47-62.e16. [PMID: 36608657 DOI: 10.1016/j.cell.2022.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/16/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
Horizontal gene transfer accelerates microbial evolution. The marine picocyanobacterium Prochlorococcus exhibits high genomic plasticity, yet the underlying mechanisms are elusive. Here, we report a novel family of DNA transposons-"tycheposons"-some of which are viral satellites while others carry cargo, such as nutrient-acquisition genes, which shape the genetic variability in this globally abundant genus. Tycheposons share distinctive mobile-lifecycle-linked hallmark genes, including a deep-branching site-specific tyrosine recombinase. Their excision and integration at tRNA genes appear to drive the remodeling of genomic islands-key reservoirs for flexible genes in bacteria. In a selection experiment, tycheposons harboring a nitrate assimilation cassette were dynamically gained and lost, thereby promoting chromosomal rearrangements and host adaptation. Vesicles and phage particles harvested from seawater are enriched in tycheposons, providing a means for their dispersal in the wild. Similar elements are found in microbes co-occurring with Prochlorococcus, suggesting a common mechanism for microbial diversification in the vast oligotrophic oceans.
Collapse
Affiliation(s)
- Thomas Hackl
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA; Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700CC Groningen, the Netherlands.
| | - Raphaël Laurenceau
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Markus J Ankenbrand
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA; University of Würzburg, Center for Computational and Theoretical Biology, 97070 Würzburg, Germany
| | - Christina Bliem
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Zev Cariani
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Elaina Thomas
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Keven D Dooley
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Aldo A Arellano
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Shane L Hogle
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Paul Berube
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Gabriel E Leventhal
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Elaine Luo
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai'i Manoa, Honolulu, HI 96822, USA
| | - John M Eppley
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai'i Manoa, Honolulu, HI 96822, USA
| | - Ahmed A Zayed
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | | | | | - Matthew B Sullivan
- Department of Microbiology & Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA; EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai'i Manoa, Honolulu, HI 96822, USA
| | - Steven J Biller
- Wellesley College, Department of Biological Sciences, Wellesley, MA 02481, USA
| | - Sallie W Chisholm
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA; Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Smaruj P, Kieliszek M. Casposons - silent heroes of the CRISPR-Cas systems evolutionary history. EXCLI JOURNAL 2023; 22:70-83. [PMID: 36814855 PMCID: PMC9939771 DOI: 10.17179/excli2022-5581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Abstract
Many archaeal and bacterial organisms possess an adaptive immunity system known as CRISPR-Cas. Its role is to recognize and degrade foreign DNA showing high similarity to repeats within the CRISPR array. In recent years computational techniques have been used to identify cas1 genes that are not associated with CRISPR systems, named cas1-solo. Often, cas1-solo genes are present in a conserved neighborhood of PolB-like polymerase genes, which is a characteristic feature of self-synthesizing, eukaryotic transposons of the Polinton class. Nearly all cas1-polB genomic islands are flanked by terminal inverted repeats and direct repeats which correspond to target site duplications. Considering the patchy taxonomic distribution of the identified islands in archaeal and bacterial genomes, they were characterized as a new superfamily of mobile genetic elements and called casposons. Here, we review recent experiments on casposons' mobility and discuss their discovery, classification, and evolutionary relationship with the CRISPR-Cas systems.
Collapse
Affiliation(s)
- Paulina Smaruj
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, United States of America,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-097 Warsaw, Poland,*To whom correspondence should be addressed: Paulina Smaruj, Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, United States of America, E-mail:
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| |
Collapse
|
12
|
Hackl T, Laurenceau R, Ankenbrand MJ, Bliem C, Cariani Z, Thomas E, Dooley KD, Arellano AA, Hogle SL, Berube P, Leventhal GE, Luo E, Eppley JM, Zayed AA, Beaulaurier J, Stepanauskas R, Sullivan MB, DeLong EF, Biller SJ, Chisholm SW. Novel integrative elements and genomic plasticity in ocean ecosystems. Cell 2023. [DOI: doi.org/10.1016/j.cell.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Salgado O, Guajardo-Leiva S, Moya-Beltrán A, Barbosa C, Ridley C, Tamayo-Leiva J, Quatrini R, Mojica FJM, Díez B. Global phylogenomic novelty of the Cas1 gene from hot spring microbial communities. Front Microbiol 2022; 13:1069452. [DOI: 10.3389/fmicb.2022.1069452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
The Cas1 protein is essential for the functioning of CRISPR-Cas adaptive systems. However, despite the high prevalence of CRISPR-Cas systems in thermophilic microorganisms, few studies have investigated the occurrence and diversity of Cas1 across hot spring microbial communities. Phylogenomic analysis of 2,150 Cas1 sequences recovered from 48 metagenomes representing hot springs (42–80°C, pH 6–9) from three continents, revealed similar ecological diversity of Cas1 and 16S rRNA associated with geographic location. Furthermore, phylogenetic analysis of the Cas1 sequences exposed a broad taxonomic distribution in thermophilic bacteria, with new clades of Cas1 homologs branching at the root of the tree or at the root of known clades harboring reference Cas1 types. Additionally, a new family of casposases was identified from hot springs, which further completes the evolutionary landscape of the Cas1 superfamily. This ecological study contributes new Cas1 sequences from known and novel locations worldwide, mainly focusing on under-sampled hot spring microbial mat taxa. Results herein show that circumneutral hot springs are environments harboring high diversity and novelty related to adaptive immunity systems.
Collapse
|
14
|
Ilyina TS. Adaptive Immunity Systems of Bacteria: Association with Self-Synthesizing Transposons, Polyfunctionality. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2022. [DOI: 10.3103/s0891416822030065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Benler S, Koonin EV. Recruitment of Mobile Genetic Elements for Diverse Cellular Functions in Prokaryotes. Front Mol Biosci 2022; 9:821197. [PMID: 35402511 PMCID: PMC8987985 DOI: 10.3389/fmolb.2022.821197] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Prokaryotic genomes are replete with mobile genetic elements (MGE) that span a continuum of replication autonomy. On numerous occasions during microbial evolution, diverse MGE lose their autonomy altogether but, rather than being quickly purged from the host genome, assume a new function that benefits the host, rendering the immobilized MGE subject to purifying selection, and resulting in its vertical inheritance. This mini-review highlights the diversity of the repurposed (exapted) MGE as well as the plethora of cellular functions that they perform. The principal contribution of the exaptation of MGE and their components is to the prokaryotic functional systems involved in biological conflicts, and in particular, defense against viruses and other MGE. This evolutionary entanglement between MGE and defense systems appears to stem both from mechanistic similarities and from similar evolutionary predicaments whereby both MGEs and defense systems tend to incur fitness costs to the hosts and thereby evolve mechanisms for survival including horizontal mobility, causing host addiction, and exaptation for functions beneficial to the host. The examples discussed demonstrate that the identity of an MGE, overall mobility and relationship with the host cell (mutualistic, symbiotic, commensal, or parasitic) are all factors that affect exaptation.
Collapse
Affiliation(s)
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
16
|
Abstract
The principal biological function of bacterial and archaeal CRISPR systems is RNA-guided adaptive immunity against viruses and other mobile genetic elements (MGEs). These systems show remarkable evolutionary plasticity and functional versatility at multiple levels, including both the defense mechanisms that lead to direct, specific elimination of the target DNA or RNA and those that cause programmed cell death (PCD) or induction of dormancy. This flexibility is also evident in the recruitment of CRISPR systems for nondefense functions. Defective CRISPR systems or individual CRISPR components have been recruited by transposons for RNA-guided transposition, by plasmids for interplasmid competition, and by viruses for antidefense and interviral conflicts. Additionally, multiple highly derived CRISPR variants of yet unknown functions have been discovered. A major route of innovation in CRISPR evolution is the repurposing of diverged repeat variants encoded outside CRISPR arrays for various structural and regulatory functions. The evolutionary plasticity and functional versatility of CRISPR systems are striking manifestations of the ubiquitous interplay between defense and “normal” cellular functions. The CRISPR systems show remarkable functional versatility beyond their principal function as an adaptive immune mechanism. This Essay discusses how derived CRISPR systems have been recruited by transposons on multiple occasions and mediate RNA-guided transposition; derived CRISPR RNAs are frequently recruited for regulatory functions.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
17
|
Koonin EV, Dolja VV, Krupovic M, Kuhn JH. Viruses Defined by the Position of the Virosphere within the Replicator Space. Microbiol Mol Biol Rev 2021; 85:e0019320. [PMID: 34468181 PMCID: PMC8483706 DOI: 10.1128/mmbr.00193-20] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Originally, viruses were defined as miniscule infectious agents that passed through filters that retain even the smallest cells. Subsequently, viruses were considered obligate intracellular parasites whose reproduction depends on their cellular hosts for energy supply and molecular building blocks. However, these features are insufficient to unambiguously define viruses as they are broadly understood today. We outline possible approaches to define viruses and explore the boundaries of the virosphere within the virtual space of replicators and the relationships between viruses and other types of replicators. Regardless of how, exactly, viruses are defined, viruses clearly have evolved on many occasions from nonviral replicators, such as plasmids, by recruiting host proteins to become virion components. Conversely, other types of replicators have repeatedly evolved from viruses. Thus, the virosphere is a dynamic entity with extensive evolutionary traffic across its boundaries. We argue that the virosphere proper, here termed orthovirosphere, consists of a distinct variety of replicators that encode structural proteins encasing the replicators' genomes, thereby providing protection and facilitating transmission among hosts. Numerous and diverse replicators, such as virus-derived but capsidless RNA and DNA elements, or defective viruses occupy the zone surrounding the orthovirosphere in the virtual replicator space. We define this zone as the perivirosphere. Although intense debates on the nature of certain replicators that adorn the internal and external boundaries of the virosphere will likely continue, we present an operational definition of virus that recently has been accepted by the International Committee on Taxonomy of Viruses.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
18
|
Kolesnik MV, Fedorova I, Karneyeva KA, Artamonova DN, Severinov KV. Type III CRISPR-Cas Systems: Deciphering the Most Complex Prokaryotic Immune System. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1301-1314. [PMID: 34903162 PMCID: PMC8527444 DOI: 10.1134/s0006297921100114] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022]
Abstract
The emergence and persistence of selfish genetic elements is an intrinsic feature of all living systems. Cellular organisms have evolved a plethora of elaborate defense systems that limit the spread of such genetic parasites. CRISPR-Cas are RNA-guided defense systems used by prokaryotes to recognize and destroy foreign nucleic acids. These systems acquire and store fragments of foreign nucleic acids and utilize the stored sequences as guides to recognize and destroy genetic invaders. CRISPR-Cas systems have been extensively studied, as some of them are used in various genome editing technologies. Although Type III CRISPR-Cas systems are among the most common CRISPR-Cas systems, they are also some of the least investigated ones, mostly due to the complexity of their action compared to other CRISPR-Cas system types. Type III effector complexes specifically recognize and cleave RNA molecules. The recognition of the target RNA activates the effector large subunit - the so-called CRISPR polymerase - which cleaves DNA and produces small cyclic oligonucleotides that act as signaling molecules to activate auxiliary effectors, notably non-specific RNases. In this review, we provide a historical overview of the sometimes meandering pathway of the Type III CRISPR research. We also review the current data on the structures and activities of Type III CRISPR-Cas systems components, their biological roles, and evolutionary history. Finally, using structural modeling with AlphaFold2, we show that the archaeal HRAMP signature protein, which heretofore has had no assigned function, is a degenerate relative of Type III CRISPR-Cas signature protein Cas10, suggesting that HRAMP systems have descended from Type III CRISPR-Cas systems or their ancestors.
Collapse
Affiliation(s)
- Matvey V Kolesnik
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
| | - Iana Fedorova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Karyna A Karneyeva
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
| | - Daria N Artamonova
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
| | - Konstantin V Severinov
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
| |
Collapse
|
19
|
Wang X, Yuan Q, Zhang W, Ji S, Lv Y, Ren K, Lu M, Xiao Y. Sequence specific integration by the family 1 casposase from Candidatus Nitrosopumilus koreensis AR1. Nucleic Acids Res 2021; 49:9938-9952. [PMID: 34428286 PMCID: PMC8464041 DOI: 10.1093/nar/gkab725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Casposase, a homolog of Cas1 integrase, is encoded by a superfamily of mobile genetic elements known as casposons. While family 2 casposase has been well documented in both function and structure, little is known about the other three casposase families. Here, we studied the family 1 casposase lacking the helix-turn-helix (HTH) domain from Candidatus Nitrosopumilus koreensis AR1 (Ca. N. koreensis). The determinants for integration by Ca. N. koreensis casposase were extensively investigated, and it was found that a 13-bp target site duplication (TSD) sequence, a minimal 3-bp leader and three different nucleotides of the TSD sequences are indispensable for target specific integration. Significantly, the casposase can site-specifically integrate a broad range of terminal inverted repeat (TIR)-derived oligonucleotides ranging from 7-nt to ∼4000-bp, and various oligonucleotides lacking the 5′-TTCTA-3′ motif at the 3′ end of TIR sequence can be integrated efficiently. Furthermore, similar to some Cas1 homologs, the casposase utilizes a 5′-ATAA-3′ motif in the TSD as a molecular ruler to dictate nucleophilic attack at 9-bp downstream of the end of the ruler during the spacer-side integration. By characterizing the family 1 Ca. N. koreensis casposase, we have extended our understanding on mechanistic similarities and evolutionary connections between casposons and the adaptation elements of CRISPR-Cas immunity.
Collapse
Affiliation(s)
- Xiaoke Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| | - Qinling Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| | - Wenxuan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| | - Suyu Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| | - Yang Lv
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| | - Kejing Ren
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| | - Meiling Lu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing210009, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| |
Collapse
|
20
|
Makarova KS, Wolf YI, Shmakov SA, Liu Y, Li M, Koonin EV. Unprecedented Diversity of Unique CRISPR-Cas-Related Systems and Cas1 Homologs in Asgard Archaea. CRISPR J 2021; 3:156-163. [PMID: 33555973 DOI: 10.1089/crispr.2020.0012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The principal function of archaeal and bacterial CRISPR-Cas systems is antivirus adaptive immunity. However, recent genome analyses identified a variety of derived CRISPR-Cas variants at least some of which appear to perform different functions. Here, we describe a unique repertoire of CRISPR-Cas-related systems that we discovered by searching archaeal metagenome-assemble genomes of the Asgard superphylum. Several of these variants contain extremely diverged homologs of Cas1, the integrase involved in CRISPR adaptation as well as casposon transposition. Strikingly, the diversity of Cas1 in Asgard archaea alone is greater than that detected so far among the rest of archaea and bacteria. The Asgard CRISPR-Cas derivatives also encode distinct forms of Cas4, Cas5, and Cas7 proteins, and/or additional nucleases. Some of these systems are predicted to perform defense functions, but possibly not programmable ones, whereas others are likely to represent previously unknown mobile genetic elements.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Sergey A Shmakov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Yang Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P.R. China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P.R. China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Ma CH, Javanmardi K, Finkelstein IJ, Jayaram M. Disintegration promotes protospacer integration by the Cas1-Cas2 complex. eLife 2021; 10:65763. [PMID: 34435949 PMCID: PMC8390005 DOI: 10.7554/elife.65763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
‘Disintegration’—the reversal of transposon DNA integration at a target site—is regarded as an abortive off-pathway reaction. Here, we challenge this view with a biochemical investigation of the mechanism of protospacer insertion, which is mechanistically analogous to DNA transposition, by the Streptococcus pyogenes Cas1-Cas2 complex. In supercoiled target sites, the predominant outcome is the disintegration of one-ended insertions that fail to complete the second integration event. In linear target sites, one-ended insertions far outnumber complete protospacer insertions. The second insertion event is most often accompanied by the disintegration of the first, mediated either by the 3′-hydroxyl exposed during integration or by water. One-ended integration intermediates may mature into complete spacer insertions via DNA repair pathways that are also involved in transposon mobility. We propose that disintegration-promoted integration is functionally important in the adaptive phase of CRISPR-mediated bacterial immunity, and perhaps in other analogous transposition reactions.
Collapse
Affiliation(s)
- Chien-Hui Ma
- Department of Molecular Biosciences and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Kamyab Javanmardi
- Department of Molecular Biosciences and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, United States.,Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, United States
| | - Makkuni Jayaram
- Department of Molecular Biosciences and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, United States
| |
Collapse
|
22
|
Butiuc-Keul A, Farkas A, Carpa R, Iordache D. CRISPR-Cas System: The Powerful Modulator of Accessory Genomes in Prokaryotes. Microb Physiol 2021; 32:2-17. [PMID: 34192695 DOI: 10.1159/000516643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/16/2021] [Indexed: 11/19/2022]
Abstract
Being frequently exposed to foreign nucleic acids, bacteria and archaea have developed an ingenious adaptive defense system, called CRISPR-Cas. The system is composed of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) array, together with CRISPR (cas)-associated genes. This system consists of a complex machinery that integrates fragments of foreign nucleic acids from viruses and mobile genetic elements (MGEs), into CRISPR arrays. The inserted segments (spacers) are transcribed and then used by cas proteins as guide RNAs for recognition and inactivation of the targets. Different types and families of CRISPR-Cas systems consist of distinct adaptation and effector modules with evolutionary trajectories, partially independent. The origin of the effector modules and the mechanism of spacer integration/deletion is far less clear. A review of the most recent data regarding the structure, ecology, and evolution of CRISPR-Cas systems and their role in the modulation of accessory genomes in prokaryotes is proposed in this article. The CRISPR-Cas system's impact on the physiology and ecology of prokaryotes, modulation of horizontal gene transfer events, is also discussed here. This system gained popularity after it was proposed as a tool for plant and animal embryo editing, in cancer therapy, as antimicrobial against pathogenic bacteria, and even for combating the novel coronavirus - SARS-CoV-2; thus, the newest and promising applications are reviewed as well.
Collapse
Affiliation(s)
- Anca Butiuc-Keul
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania.,Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Anca Farkas
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania.,Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania.,Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Dumitrana Iordache
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
23
|
Long C, Dai L, E C, Da LT, Yu J. Allosteric regulation in CRISPR/Cas1-Cas2 protospacer acquisition mediated by DNA and Cas2. Biophys J 2021; 120:3126-3137. [PMID: 34197800 PMCID: PMC8390960 DOI: 10.1016/j.bpj.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 11/19/2022] Open
Abstract
Cas1 and Cas2 are highly conserved proteins across clustered-regularly-interspaced-short-palindromic-repeat-Cas systems and play a significant role in protospacer acquisition. Based on crystal structure of twofold symmetric Cas1-Cas2 in complex with dual-forked protospacer DNA (psDNA), we conducted all-atom molecular dynamics simulations to study the psDNA binding, recognition, and response to cleavage on the protospacer-adjacent-motif complementary sequence, or PAMc, of Cas1-Cas2. In the simulation, we noticed that two active sites of Cas1 and Cas1’ bind asymmetrically to two identical PAMc on the psDNA captured from the crystal structure. For the modified psDNA containing only one PAMc, as that to be recognized by Cas1-Cas2 in general, our simulations show that the non-PAMc association site of Cas1-Cas2 remains destabilized until after the stably bound PAMc being cleaved at the corresponding association site. Thus, long-range correlation appears to exist upon the PAMc cleavage between the two active sites (∼10 nm apart) on Cas1-Cas2, which can be allosterically mediated by psDNA and Cas2 and Cas2’ in bridging. To substantiate such findings, we conducted repeated runs and further simulated Cas1-Cas2 in complex with synthesized psDNA sequences psL and psH, which have been measured with low and high frequency in acquisition, respectively. Notably, such intersite correlation becomes even more pronounced for the Cas1-Cas2 in complex with psH but remains low for the Cas1-Cas2 in complex with psL. Hence, our studies demonstrate that PAMc recognition and cleavage at one active site of Cas1-Cas2 may allosterically regulate non-PAMc association or even cleavage at the other site, and such regulation can be mediated by noncatalytic Cas2 and DNA protospacer to possibly support the ensued psDNA acquisition.
Collapse
Affiliation(s)
- Chunhong Long
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Liqiang Dai
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen, China; Beijing Computational Science Research Center, Beijing, China
| | - Chao E
- Beijing Computational Science Research Center, Beijing, China
| | - Lin-Tai Da
- Shanghai Center for Systems Biomedicine, Shanghai JiaoTong University, Shanghai, China
| | - Jin Yu
- Departments of Physics and Astronomy and Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California.
| |
Collapse
|
24
|
Zabrady K, Zabrady M, Kolesar P, Li AWH, Doherty AJ. CRISPR-Associated Primase-Polymerases are implicated in prokaryotic CRISPR-Cas adaptation. Nat Commun 2021; 12:3690. [PMID: 34140468 PMCID: PMC8211822 DOI: 10.1038/s41467-021-23535-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/04/2021] [Indexed: 12/24/2022] Open
Abstract
CRISPR-Cas pathways provide prokaryotes with acquired “immunity” against foreign genetic elements, including phages and plasmids. Although many of the proteins associated with CRISPR-Cas mechanisms are characterized, some requisite enzymes remain elusive. Genetic studies have implicated host DNA polymerases in some CRISPR-Cas systems but CRISPR-specific replicases have not yet been discovered. We have identified and characterised a family of CRISPR-Associated Primase-Polymerases (CAPPs) in a range of prokaryotes that are operonically associated with Cas1 and Cas2. CAPPs belong to the Primase-Polymerase (Prim-Pol) superfamily of replicases that operate in various DNA repair and replication pathways that maintain genome stability. Here, we characterise the DNA synthesis activities of bacterial CAPP homologues from Type IIIA and IIIB CRISPR-Cas systems and establish that they possess a range of replicase activities including DNA priming, polymerisation and strand-displacement. We demonstrate that CAPPs operonically-associated partners, Cas1 and Cas2, form a complex that possesses spacer integration activity. We show that CAPPs physically associate with the Cas proteins to form bespoke CRISPR-Cas complexes. Finally, we propose how CAPPs activities, in conjunction with their partners, may function to undertake key roles in CRISPR-Cas adaptation. CAPPs are putative Primase-Polymerases associated with CRISPR-Cas operons. Here, the authors show CAPPs genetic and physical association with Cas1 and Cas2, their capacity to function as DNA-dependent DNA primases and DNA polymerases, and that Cas1-Cas2 complex adjacent to CAPP has bona fide spacer integration activity.
Collapse
Affiliation(s)
- Katerina Zabrady
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Matej Zabrady
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Peter Kolesar
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.,National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Arthur W H Li
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
25
|
Lau CH, Bolt EL. Integration of diverse DNA substrates by a casposase can be targeted to R-loops in vitro by its fusion to Cas9. Biosci Rep 2021; 41:BSR20203595. [PMID: 33289517 PMCID: PMC7786333 DOI: 10.1042/bsr20203595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
CRISPR systems build adaptive immunity against mobile genetic elements by DNA capture and integration catalysed by Cas1-Cas2 protein complexes. Recent studies suggested that CRISPR repeats and adaptation module originated from a novel type of DNA transposons called casposons. Casposons encode a Cas1 homologue called casposase that alone integrates into target molecules single and double-stranded DNA containing terminal inverted repeats (TIRs) from casposons. A recent study showed Methanosarcina mazei casposase is able to integrate random DNA oligonucleotides, followed up in this work using Acidoprofundum boonei casposase, from which we also observe promiscuous substrate integration. Here we first show that the substrate flexibility of Acidoprofundum boonei casposase extends to random integration of DNA without TIRs, including integration of a functional gene. We then used this to investigate targeting of the casposase-catalysed DNA integration reactions to specific DNA sites that would allow insertion of defined DNA payloads. Casposase-Cas9 fusions were engineered that were catalytically proficient in vitro and generated RNA-guided DNA integration products from short synthetic DNA or a gene, with or without TIRs. However, DNA integration could still occur unguided due to the competing background activity of the casposase moiety. Expression of Casposase-dCas9 in Escherichia coli cells effectively targeted chromosomal and plasmid lacZ revealed by reduced β-galactosidase activity but DNA integration was not detected. The promiscuous substrate integration properties of casposases make them potential DNA insertion tools. The Casposase-dCas9 fusion protein may serves as a prototype for development in genetic editing for DNA insertion that is independent of homology-directed DNA repair.
Collapse
Affiliation(s)
- Chun Hang Lau
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Edward L. Bolt
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K
| |
Collapse
|
26
|
Abstract
Prokaryotes have developed numerous defense strategies to combat the constant threat posed by the diverse genetic parasites that endanger them. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas loci guard their hosts with an adaptive immune system against foreign nucleic acids. Protection starts with an immunization phase, in which short pieces of the invader's genome, known as spacers, are captured and integrated into the CRISPR locus after infection. Next, during the targeting phase, spacers are transcribed into CRISPR RNAs (crRNAs) that guide CRISPR-associated (Cas) nucleases to destroy the invader's DNA or RNA. Here we describe the many different molecular mechanisms of CRISPR targeting and how they are interconnected with the immunization phase through a third phase of the CRISPR-Cas immune response: primed spacer acquisition. In this phase, Cas proteins direct the crRNA-guided acquisition of additional spacers to achieve a more rapid and robust immunization of the population.
Collapse
Affiliation(s)
- Philip M. Nussenzweig
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Luciano A. Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
27
|
Kazlauskas D, Krupovic M, Guglielmini J, Forterre P, Venclovas Č. Diversity and evolution of B-family DNA polymerases. Nucleic Acids Res 2020; 48:10142-10156. [PMID: 32976577 PMCID: PMC7544198 DOI: 10.1093/nar/gkaa760] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
B-family DNA polymerases (PolBs) represent the most common replicases. PolB enzymes that require RNA (or DNA) primed templates for DNA synthesis are found in all domains of life and many DNA viruses. Despite extensive research on PolBs, their origins and evolution remain enigmatic. Massive accumulation of new genomic and metagenomic data from diverse habitats as well as availability of new structural information prompted us to conduct a comprehensive analysis of the PolB sequences, structures, domain organizations, taxonomic distribution and co-occurrence in genomes. Based on phylogenetic analysis, we identified a new, widespread group of bacterial PolBs that are more closely related to the catalytically active N-terminal half of the eukaryotic PolEpsilon (PolEpsilonN) than to Escherichia coli Pol II. In Archaea, we characterized six new groups of PolBs. Two of them show close relationships with eukaryotic PolBs, the first one with PolEpsilonN, and the second one with PolAlpha, PolDelta and PolZeta. In addition, structure comparisons suggested common origin of the catalytically inactive C-terminal half of PolEpsilon (PolEpsilonC) and PolAlpha. Finally, in certain archaeal PolBs we discovered C-terminal Zn-binding domains closely related to those of PolAlpha and PolEpsilonC. Collectively, the obtained results allowed us to propose a scenario for the evolution of eukaryotic PolBs.
Collapse
Affiliation(s)
- Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Mart Krupovic
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France
| | - Julien Guglielmini
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Patrick Forterre
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| |
Collapse
|
28
|
Zhang Y, Sun X, Wang Q, Xu J, Dong F, Yang S, Yang J, Zhang Z, Qian Y, Chen J, Zhang J, Liu Y, Tao R, Jiang Y, Yang J, Yang S. Multicopy Chromosomal Integration Using CRISPR-Associated Transposases. ACS Synth Biol 2020; 9:1998-2008. [PMID: 32551502 DOI: 10.1021/acssynbio.0c00073] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Controlling the copy number of gene expression cassettes is an important strategy to engineer bacterial cells into high-efficiency biocatalysts. Current strategies mostly use plasmid vectors, but multicopy plasmids are often genetically unstable, and their copy numbers cannot be precisely controlled. The integration of expression cassettes into a bacterial chromosome has advantages, but iterative integration is laborious, and it is challenging to obtain a library with varied gene doses for phenotype characterization. Here, we demonstrated that multicopy chromosomal integration using CRISPR-associated transposases (MUCICAT) can be achieved by designing a crRNA to target multicopy loci or a crRNA array to target multiple loci in the Escherichia coli genome. Within 5 days without selection pressure, E. coli strains carrying cargos with successively increasing copy numbers (up to 10) were obtained. Recombinant MUCICAT E. coli containing genomic multicopy glucose dehydrogenase expression cassettes showed 2.6-fold increased expression of this important industrial enzyme compared to E. coli harboring the conventional protein-expressing plasmid pET24a. Successful extension of MUCICAT to Tatumella citrea further demonstrated that MUCICAT may be generally applied to many bacterial species.
Collapse
Affiliation(s)
- Yiwen Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Qingzhuo Wang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Feng Dong
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China
| | - Siqi Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Zixu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Yuan Qian
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Chen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiao Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingmiao Liu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Rongsheng Tao
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China
| | - Yu Jiang
- Shanghai Taoyusheng Biotechnology Co., Ltd, Shanghai 201203, China
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China
| |
Collapse
|
29
|
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020; 38:824-844. [PMID: 32572269 DOI: 10.1038/s41587-020-0561-9] [Citation(s) in RCA: 1198] [Impact Index Per Article: 299.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
The development of new CRISPR-Cas genome editing tools continues to drive major advances in the life sciences. Four classes of CRISPR-Cas-derived genome editing agents-nucleases, base editors, transposases/recombinases and prime editors-are currently available for modifying genomes in experimental systems. Some of these agents have also moved rapidly into the clinic. Each tool comes with its own capabilities and limitations, and major efforts have broadened their editing capabilities, expanded their targeting scope and improved editing specificity. We analyze key considerations when choosing genome editing agents and identify opportunities for future improvements and applications in basic research and therapeutics.
Collapse
Affiliation(s)
- Andrew V Anzalone
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Luke W Koblan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
30
|
Wang P, Li LZ, Qin YL, Liang ZL, Li XT, Yin HQ, Liu LJ, Liu SJ, Jiang CY. Comparative Genomic Analysis Reveals the Metabolism and Evolution of the Thermophilic Archaeal Genus Metallosphaera. Front Microbiol 2020; 11:1192. [PMID: 32655516 PMCID: PMC7325606 DOI: 10.3389/fmicb.2020.01192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/11/2020] [Indexed: 01/15/2023] Open
Abstract
Members of the genus Metallosphaera are widely found in sulfur-rich and metal-laden environments, but their physiological and ecological roles remain poorly understood. Here, we sequenced Metallosphaera tengchongensis Ric-A, a strain isolated from the Tengchong hot spring in Yunnan Province, China, and performed a comparative genome analysis with other Metallosphaera genomes. The genome of M. tengchongensis had an average nucleotide identity (ANI) of approximately 70% to that of Metallosphaera cuprina. Genes sqr, tth, sir, tqo, hdr, tst, soe, and sdo associated with sulfur oxidation, and gene clusters fox and cbs involved in iron oxidation existed in all Metallosphaera genomes. However, the adenosine-5'-phosphosulfate (APS) pathway was only detected in Metallosphaera sedula and Metallosphaera yellowstonensis, and several subunits of fox cluster were lost in M. cuprina. The complete 3-hydroxypropionate/4-hydroxybutyrate cycle and dicarboxylate/4-hydroxybutyrate cycle involved in carbon fixation were found in all Metallosphaera genomes. A large number of gene family gain events occurred in M. yellowstonensis and M. sedula, whereas gene family loss events occurred frequently in M. cuprina. Pervasive strong purifying selection was found acting on the gene families of Metallosphaera, of which transcription-related genes underwent the strongest purifying selection. In contrast, genes related to prophages, transposons, and defense mechanisms were under weaker purifying pressure. Taken together, this study expands knowledge of the genomic traits of Metallosphaera species and sheds light on their evolution.
Collapse
Affiliation(s)
- Pei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Zhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Ya Ling Qin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zong Lin Liang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiu Tong Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Hua Qun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Li Jun Liu
- Department of Pathogen Biology, School of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Makarova KS, Karamycheva S, Shah SA, Vestergaard G, Garrett RA, Koonin EV. Predicted highly derived class 1 CRISPR-Cas system in Haloarchaea containing diverged Cas5 and Cas7 homologs but no CRISPR array. FEMS Microbiol Lett 2020; 366:5472869. [PMID: 30993331 DOI: 10.1093/femsle/fnz079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022] Open
Abstract
Screening of genomic and metagenomic databases for new variants of CRISPR-Cas systems increasingly results in the discovery of derived variants that do not seem to possess the interference capacity and are implicated in functions distinct from adaptive immunity. We describe an extremely derived putative class 1 CRISPR-Cas system that is present in many Halobacteria and consists of distant homologs of the Cas5 and Cas7 protein along with an uncharacterized conserved protein and various nucleases. We hypothesize that, although this system lacks typical CRISPR effectors or a CRISPR array, it functions as a RNA-dependent defense mechanism that, unlike other derived CRISPR-Cas, utilizes alternative nucleases to cleave invader genomes.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Svetlana Karamycheva
- National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Shiraz A Shah
- Danish Archaea Centre, Department of Biology, University of Copenhagen, Danish Archaea Centre, Ole Maaloes Vej 5, Copenhagen , DK-2200 Denmark
| | - Gisle Vestergaard
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Anker Engelunds Vej 1, 2800 Kgs. Lyngby, Denmark
| | - Roger A Garrett
- Danish Archaea Centre, Department of Biology, University of Copenhagen, Danish Archaea Centre, Ole Maaloes Vej 5, Copenhagen , DK-2200 Denmark
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
| |
Collapse
|
32
|
Abstract
Viruses are ubiquitous parasites of cellular life and the most abundant biological entities on Earth. It is widely accepted that viruses are polyphyletic, but a consensus scenario for their ultimate origin is still lacking. Traditionally, three scenarios for the origin of viruses have been considered: descent from primordial, precellular genetic elements, reductive evolution from cellular ancestors and escape of genes from cellular hosts, achieving partial replicative autonomy and becoming parasitic genetic elements. These classical scenarios give different timelines for the origin(s) of viruses and do not explain the provenance of the two key functional modules that are responsible, respectively, for viral genome replication and virion morphogenesis. Here, we outline a 'chimeric' scenario under which different types of primordial, selfish replicons gave rise to viruses by recruiting host proteins for virion formation. We also propose that new groups of viruses have repeatedly emerged at all stages of the evolution of life, often through the displacement of ancestral structural and genome replication genes.
Collapse
|
33
|
Béguin P, Chekli Y, Sezonov G, Forterre P, Krupovic M. Sequence motifs recognized by the casposon integrase of Aciduliprofundum boonei. Nucleic Acids Res 2020; 47:6386-6395. [PMID: 31114911 PMCID: PMC6614799 DOI: 10.1093/nar/gkz447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/17/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
Casposons are a group of bacterial and archaeal DNA transposons encoding a specific integrase, termed casposase, which is homologous to the Cas1 enzyme responsible for the integration of new spacers into CRISPR loci. Here, we characterized the sequence motifs recognized by the casposase from a thermophilic archaeon Aciduliprofundum boonei. We identified a stretch of residues, located in the leader region upstream of the actual integration site, whose deletion or mutagenesis impaired the concerted integration reaction. However, deletions of two-thirds of the target site were fully functional. Various single-stranded 6-FAM-labelled oligonucleotides derived from casposon terminal inverted repeats were as efficiently incorporated as duplexes into the target site. This result suggests that, as in the case of spacer insertion by the CRISPR Cas1–Cas2 integrase, casposon integration involves splaying of the casposon termini, with single-stranded ends being the actual substrates. The sequence critical for incorporation was limited to the five terminal residues derived from the 3′ end of the casposon. Furthermore, we characterize the casposase from Nitrosopumilus koreensis, a marine member of the phylum Thaumarchaeota, and show that it shares similar properties with the A. boonei enzyme, despite belonging to a different family. These findings further reinforce the mechanistic similarities and evolutionary connection between the casposons and the adaptation module of the CRISPR–Cas systems.
Collapse
Affiliation(s)
- Pierre Béguin
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25-28 rue du Dr. Roux 75724 Paris cedex 15, France
| | - Yankel Chekli
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25-28 rue du Dr. Roux 75724 Paris cedex 15, France
| | - Guennadi Sezonov
- UMRS 1138 - Centre de Recherche des Cordeliers, Sorbonne Université, 15, rue de l'École de Médecine, 75006 Paris, France
| | - Patrick Forterre
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25-28 rue du Dr. Roux 75724 Paris cedex 15, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris- Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, Paris, France
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25-28 rue du Dr. Roux 75724 Paris cedex 15, France
| |
Collapse
|
34
|
Abstract
Since Barbara McClintock’s groundbreaking discovery of mobile DNA sequences some 70 years ago, transposable elements have come to be recognized as important mutagenic agents impacting genome composition, genome evolution, and human health. Transposable elements are a major constituent of prokaryotic and eukaryotic genomes, and the transposition mechanisms enabling transposon proliferation over evolutionary time remain engaging topics for study, suggesting complex interactions with the host, both antagonistic and mutualistic. The impact of transposition is profound, as over 100 human heritable diseases have been attributed to transposon insertions. Transposition can be highly mutagenic, perturbing genome integrity and gene expression in a wide range of organisms. This mutagenic potential has been exploited in the laboratory, where transposons have long been utilized for phenotypic screening and the generation of defined mutant libraries. More recently, barcoding applications and methods for RNA-directed transposition are being used towards new phenotypic screens and studies relevant for gene therapy. Thus, transposable elements are significant in affecting biology both
in vivo and in the laboratory, and this review will survey advances in understanding the biological role of transposons and relevant laboratory applications of these powerful molecular tools.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
35
|
Hickman AB, Kailasan S, Genzor P, Haase AD, Dyda F. Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas. eLife 2020; 9:50004. [PMID: 31913120 PMCID: PMC6977970 DOI: 10.7554/elife.50004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022] Open
Abstract
Key to CRISPR-Cas adaptive immunity is maintaining an ongoing record of invading nucleic acids, a process carried out by the Cas1-Cas2 complex that integrates short segments of foreign genetic material (spacers) into the CRISPR locus. It is hypothesized that Cas1 evolved from casposases, a novel class of transposases. We show here that the Methanosarcina mazei casposase can integrate varied forms of the casposon end in vitro, and recapitulates several properties of CRISPR-Cas integrases including site-specificity. The X-ray structure of the casposase bound to DNA representing the product of integration reveals a tetramer with target DNA bound snugly between two dimers in which single-stranded casposon end binding resembles that of spacer 3'-overhangs. The differences between transposase and CRISPR-Cas integrase are largely architectural, and it appears that evolutionary change involved changes in protein-protein interactions to favor Cas2 binding over tetramerization; this in turn led to preferred integration of single spacers over two transposon ends.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Shweta Kailasan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Pavol Genzor
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Astrid D Haase
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
36
|
Abstract
Many bacteria and archaea have the unique ability to heritably alter their genomes by incorporating small fragments of foreign DNA, called spacers, into CRISPR loci. Once transcribed and processed into individual CRISPR RNAs, spacer sequences guide Cas effector nucleases to destroy complementary, invading nucleic acids. Collectively, these two processes are known as the CRISPR-Cas immune response. In this Progress article, we review recent studies that have advanced our understanding of the molecular mechanisms underlying spacer acquisition and that have revealed a fundamental link between the two phases of CRISPR immunity that ensures optimal immunity from newly acquired spacers. Finally, we highlight important open questions and discuss the potential basic and applied impact of spacer acquisition research.
Collapse
Affiliation(s)
- Jon McGinn
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA
| | | |
Collapse
|
37
|
Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P, Moineau S, Mojica FJM, Scott D, Shah SA, Siksnys V, Terns MP, Venclovas Č, White MF, Yakunin AF, Yan W, Zhang F, Garrett RA, Backofen R, van der Oost J, Barrangou R, Koonin EV. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 2019; 18:67-83. [DOI: 10.1038/s41579-019-0299-x] [Citation(s) in RCA: 797] [Impact Index Per Article: 159.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 12/16/2022]
|
38
|
Peters JE. Targeted transposition with Tn7 elements: safe sites, mobile plasmids, CRISPR/Cas and beyond. Mol Microbiol 2019; 112:1635-1644. [PMID: 31502713 PMCID: PMC6904524 DOI: 10.1111/mmi.14383] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 01/02/2023]
Abstract
Transposon Tn7 is notable for the control it exercises over where transposition events are directed. One Tn7 integration pathways recognizes a highly conserved attachment (att) site in the chromosome, while a second pathway specifically recognizes mobile plasmids that facilitate transfer of the element to new hosts. In this review, I discuss newly discovered families of Tn7-like elements with different targeting pathways. Perhaps the most exciting examples are multiple instances where Tn7-like elements have repurposed CRISPR/Cas systems. In these cases, the CRISPR/Cas systems have lost their canonical defensive function to destroy incoming mobile elements; instead, the systems have been naturally adapted to use guide RNAs to specifically direct transposition into these mobile elements. The new families of Tn7-like elements also include a variety of novel att sites in bacterial chromosomes where genome islands can form. Interesting families have also been revealed where proteins described in the prototypic Tn7 element are fused or otherwise repurposed for the new dual activities. This expanded understanding of Tn7-like elements broadens our view of how genetic systems are repurposed and provides potentially exciting new tools for genome modification and genomics. Future opportunities and challenges to understanding the impact of the new families of Tn7-like elements are discussed.
Collapse
Affiliation(s)
- Joseph E Peters
- Department of Microbiology, Cornell University, 175a Wing Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
39
|
Medvedeva S, Liu Y, Koonin EV, Severinov K, Prangishvili D, Krupovic M. Virus-borne mini-CRISPR arrays are involved in interviral conflicts. Nat Commun 2019; 10:5204. [PMID: 31729390 PMCID: PMC6858448 DOI: 10.1038/s41467-019-13205-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/23/2019] [Indexed: 01/21/2023] Open
Abstract
CRISPR-Cas immunity is at the forefront of antivirus defense in bacteria and archaea and specifically targets viruses carrying protospacers matching the spacers catalogued in the CRISPR arrays. Here, we perform deep sequencing of the CRISPRome-all spacers contained in a microbiome-associated with hyperthermophilic archaea of the order Sulfolobales recovered directly from an environmental sample and from enrichment cultures established in the laboratory. The 25 million CRISPR spacers sequenced from a single sampling site dwarf the diversity of spacers from all available Sulfolobales isolates and display complex temporal dynamics. Comparison of closely related virus strains shows that CRISPR targeting drives virus genome evolution. Furthermore, we show that some archaeal viruses carry mini-CRISPR arrays with 1-2 spacers and preceded by leader sequences but devoid of cas genes. Closely related viruses present in the same population carry spacers against each other. Targeting by these virus-borne spacers represents a distinct mechanism of heterotypic superinfection exclusion and appears to promote archaeal virus speciation.
Collapse
Affiliation(s)
- Sofia Medvedeva
- Institut Pasteur, Department of Microbiology, 75015, Paris, France
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
- Sorbonne Université, Collège doctoral, 75005, Paris, France
| | - Ying Liu
- Institut Pasteur, Department of Microbiology, 75015, Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
- Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA
- Institute of Molecular Genetics, Moscow, 123182, Russia
| | - David Prangishvili
- Institut Pasteur, Department of Microbiology, 75015, Paris, France
- Ivane Javakhishvili Tbilisi State University, Tbilisi, 0179, Georgia
| | - Mart Krupovic
- Institut Pasteur, Department of Microbiology, 75015, Paris, France.
| |
Collapse
|
40
|
Koonin EV, Makarova KS, Wolf YI, Krupovic M. Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire. Nat Rev Genet 2019; 21:119-131. [PMID: 31611667 DOI: 10.1038/s41576-019-0172-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 12/12/2022]
Abstract
All cellular life forms are afflicted by diverse genetic parasites, including viruses and other types of mobile genetic elements (MGEs), and have evolved multiple, diverse defence systems that protect them from MGE assault via different mechanisms. Here, we provide our perspectives on how recent evidence points to tight evolutionary connections between MGEs and defence systems that reach far beyond the proverbial arms race. Defence systems incur a fitness cost for the hosts; therefore, at least in prokaryotes, horizontal mobility of defence systems, mediated primarily by MGEs, is essential for their persistence. Moreover, defence systems themselves possess certain features of selfish elements. Common components of MGEs, such as site-specific nucleases, are 'guns for hire' that can also function as parts of defence mechanisms and are often shuttled between MGEs and defence systems. Thus, evolutionary and molecular factors converge to mould the multifaceted, inextricable connection between MGEs and anti-MGE defence systems.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA.
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Mart Krupovic
- Department of Microbiology, Institut Pasteur, Paris, France.
| |
Collapse
|
41
|
Mougari S, Sahmi-Bounsiar D, Levasseur A, Colson P, La Scola B. Virophages of Giant Viruses: An Update at Eleven. Viruses 2019; 11:E733. [PMID: 31398856 PMCID: PMC6723459 DOI: 10.3390/v11080733] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022] Open
Abstract
The last decade has been marked by two eminent discoveries that have changed our perception of the virology field: The discovery of giant viruses and a distinct new class of viral agents that parasitize their viral factories, the virophages. Coculture and metagenomics have actively contributed to the expansion of the virophage family by isolating dozens of new members. This increase in the body of data on virophage not only revealed the diversity of the virophage group, but also the relevant ecological impact of these small viruses and their potential role in the dynamics of the microbial network. In addition, the isolation of virophages has led us to discover previously unknown features displayed by their host viruses and cells. In this review, we present an update of all the knowledge on the isolation, biology, genomics, and morphological features of the virophages, a decade after the discovery of their first member, the Sputnik virophage. We discuss their parasitic lifestyle as bona fide viruses of the giant virus factories, genetic parasites of their genomes, and then their role as a key component or target for some host defense mechanisms during the tripartite virophage-giant virus-host cell interaction. We also present the latest advances regarding their origin, classification, and definition that have been widely discussed.
Collapse
Affiliation(s)
- Said Mougari
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Dehia Sahmi-Bounsiar
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Anthony Levasseur
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Philippe Colson
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France.
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France.
| | - Bernard La Scola
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France.
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France.
| |
Collapse
|
42
|
Faure G, Shmakov SA, Yan WX, Cheng DR, Scott DA, Peters JE, Makarova KS, Koonin EV. CRISPR-Cas in mobile genetic elements: counter-defence and beyond. Nat Rev Microbiol 2019; 17:513-525. [PMID: 31165781 PMCID: PMC11165670 DOI: 10.1038/s41579-019-0204-7] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The principal function of CRISPR-Cas systems in archaea and bacteria is defence against mobile genetic elements (MGEs), including viruses, plasmids and transposons. However, the relationships between CRISPR-Cas and MGEs are far more complex. Several classes of MGE contributed to the origin and evolution of CRISPR-Cas, and, conversely, CRISPR-Cas systems and their components were recruited by various MGEs for functions that remain largely uncharacterized. In this Analysis article, we investigate and substantially expand the range of CRISPR-Cas components carried by MGEs. Three groups of Tn7-like transposable elements encode 'minimal' type I CRISPR-Cas derivatives capable of target recognition but not cleavage, and another group encodes an inactivated type V variant. These partially inactivated CRISPR-Cas variants might mediate guide RNA-dependent integration of the respective transposons. Numerous plasmids and some prophages encode type IV systems, with similar predicted properties, that appear to contribute to competition among plasmids and between plasmids and viruses. Many prokaryotic viruses also carry CRISPR mini-arrays, some of which recognize other viruses and are implicated in inter-virus conflicts, and solitary repeat units, which could inhibit host CRISPR-Cas systems.
Collapse
Affiliation(s)
- Guilhem Faure
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sergey A Shmakov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | | | | | | | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
43
|
Abstract
Ammonia-oxidizing archaea (AOA) from the phylum Thaumarchaeota are ubiquitous in marine ecosystems and play a prominent role in carbon and nitrogen cycling. Previous studies have suggested that, like all microbes, thaumarchaea are infected by viruses and that viral predation has a profound impact on thaumarchaeal functioning and mortality, thereby regulating global biogeochemical cycles. However, not a single virus capable of infecting thaumarchaea has been reported thus far. Here we describe the isolation and characterization of three Nitrosopumilus spindle-shaped viruses (NSVs) that infect AOA and are distinct from other known marine viruses. Although NSVs have a narrow host range, they efficiently infect autochthonous Nitrosopumilus strains and display high rates of adsorption to their host cells. The NSVs have linear double-stranded DNA genomes of ∼28 kb that do not display appreciable sequence similarity to genomes of other known archaeal or bacterial viruses and could be considered as representatives of a new virus family, the "Thaspiviridae." Upon infection, NSV replication leads to inhibition of AOA growth, accompanied by severe reduction in the rate of ammonia oxidation and nitrite reduction. Nevertheless, unlike in the case of lytic bacteriophages, NSV propagation is not associated with detectable degradation of the host chromosome or a decrease in cell counts. The broad distribution of NSVs in AOA-dominated marine environments suggests that NSV predation might regulate the diversity and dynamics of AOA communities. Collectively, our results shed light on the diversity, evolution, and potential impact of the virosphere associated with ecologically important mesophilic archaea.
Collapse
|
44
|
Klompe SE, Vo PLH, Halpin-Healy TS, Sternberg SH. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 2019; 571:219-225. [PMID: 31189177 DOI: 10.1038/s41586-019-1323-z] [Citation(s) in RCA: 344] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/04/2019] [Indexed: 11/09/2022]
Abstract
Conventional CRISPR-Cas systems maintain genomic integrity by leveraging guide RNAs for the nuclease-dependent degradation of mobile genetic elements, including plasmids and viruses. Here we describe a notable inversion of this paradigm, in which bacterial Tn7-like transposons have co-opted nuclease-deficient CRISPR-Cas systems to catalyse RNA-guided integration of mobile genetic elements into the genome. Programmable transposition of Vibrio cholerae Tn6677 in Escherichia coli requires CRISPR- and transposon-associated molecular machineries, including a co-complex between the DNA-targeting complex Cascade and the transposition protein TniQ. Integration of donor DNA occurs in one of two possible orientations at a fixed distance downstream of target DNA sequences, and can accommodate variable length genetic payloads. Deep-sequencing experiments reveal highly specific, genome-wide DNA insertion across dozens of unique target sites. This discovery of a fully programmable, RNA-guided integrase lays the foundation for genomic manipulations that obviate the requirements for double-strand breaks and homology-directed repair.
Collapse
Affiliation(s)
- Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Phuc L H Vo
- Department of Pharmacology, Columbia University, New York, NY, USA
| | - Tyler S Halpin-Healy
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
45
|
Koonin EV, Makarova KS. Origins and evolution of CRISPR-Cas systems. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180087. [PMID: 30905284 PMCID: PMC6452270 DOI: 10.1098/rstb.2018.0087] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
CRISPR-Cas, the bacterial and archaeal adaptive immunity systems, encompass a complex machinery that integrates fragments of foreign nucleic acids, mostly from mobile genetic elements (MGE), into CRISPR arrays embedded in microbial genomes. Transcripts of the inserted segments (spacers) are employed by CRISPR-Cas systems as guide (g)RNAs for recognition and inactivation of the cognate targets. The CRISPR-Cas systems consist of distinct adaptation and effector modules whose evolutionary trajectories appear to be at least partially independent. Comparative genome analysis reveals the origin of the adaptation module from casposons, a distinct type of transposons, which employ a homologue of Cas1 protein, the integrase responsible for the spacer incorporation into CRISPR arrays, as the transposase. The origin of the effector module(s) is far less clear. The CRISPR-Cas systems are partitioned into two classes, class 1 with multisubunit effectors, and class 2 in which the effector consists of a single, large protein. The class 2 effectors originate from nucleases encoded by different MGE, whereas the origin of the class 1 effector complexes remains murky. However, the recent discovery of a signalling pathway built into the type III systems of class 1 might offer a clue, suggesting that type III effector modules could have evolved from a signal transduction system involved in stress-induced programmed cell death. The subsequent evolution of the class 1 effector complexes through serial gene duplication and displacement, primarily of genes for proteins containing RNA recognition motif domains, can be hypothetically reconstructed. In addition to the multiple contributions of MGE to the evolution of CRISPR-Cas, the reverse flow of information is notable, namely, recruitment of minimalist variants of CRISPR-Cas systems by MGE for functions that remain to be elucidated. Here, we attempt a synthesis of the diverse threads that shed light on CRISPR-Cas origins and evolution. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | | |
Collapse
|
46
|
Wilkinson M, Drabavicius G, Silanskas A, Gasiunas G, Siksnys V, Wigley DB. Structure of the DNA-Bound Spacer Capture Complex of a Type II CRISPR-Cas System. Mol Cell 2019; 75:90-101.e5. [PMID: 31080012 PMCID: PMC6620040 DOI: 10.1016/j.molcel.2019.04.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/08/2019] [Accepted: 04/11/2019] [Indexed: 12/26/2022]
Abstract
CRISPR and associated Cas proteins function as an adaptive immune system in prokaryotes to combat bacteriophage infection. During the immunization step, new spacers are acquired by the CRISPR machinery, but the molecular mechanism of spacer capture remains enigmatic. We show that the Cas9, Cas1, Cas2, and Csn2 proteins of a Streptococcus thermophilus type II-A CRISPR-Cas system form a complex and provide cryoelectron microscopy (cryo-EM) structures of three different assemblies. The predominant form, with the stoichiometry Cas18-Cas24-Csn28, referred to as monomer, contains ∼30 bp duplex DNA bound along a central channel. A minor species, termed a dimer, comprises two monomers that sandwich a further eight Cas1 and four Cas2 subunits and contains two DNA ∼30-bp duplexes within the channel. A filamentous form also comprises Cas18-Cas24-Csn28 units (typically 2-6) but with a different Cas1-Cas2 interface between them and a continuous DNA duplex running along a central channel.
Collapse
Affiliation(s)
- Martin Wilkinson
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | | | - Arunas Silanskas
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | | | | | - Dale B Wigley
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
47
|
Zhang Y, Cheng TC, Huang G, Lu Q, Surleac MD, Mandell JD, Pontarotti P, Petrescu AJ, Xu A, Xiong Y, Schatz DG. Transposon molecular domestication and the evolution of the RAG recombinase. Nature 2019; 569:79-84. [PMID: 30971819 PMCID: PMC6494689 DOI: 10.1038/s41586-019-1093-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/07/2019] [Indexed: 12/11/2022]
Abstract
Domestication of a transposon (a DNA sequence that can change its position in a genome) to give rise to the RAG1-RAG2 recombinase (RAG) and V(D)J recombination, which produces the diverse repertoire of antibodies and T cell receptors, was a pivotal event in the evolution of the adaptive immune system of jawed vertebrates. The evolutionary adaptations that transformed the ancestral RAG transposase into a RAG recombinase with appropriately regulated DNA cleavage and transposition activities are not understood. Here, beginning with cryo-electron microscopy structures of the amphioxus ProtoRAG transposase (an evolutionary relative of RAG), we identify amino acid residues and domains the acquisition or loss of which underpins the propensity of RAG for coupled cleavage, its preference for asymmetric DNA substrates and its inability to perform transposition in cells. In particular, we identify two adaptations specific to jawed-vertebrates-arginine 848 in RAG1 and an acidic region in RAG2-that together suppress RAG-mediated transposition more than 1,000-fold. Our findings reveal a two-tiered mechanism for the suppression of RAG-mediated transposition, illuminate the evolution of V(D)J recombination and provide insight into the principles that govern the molecular domestication of transposons.
Collapse
Affiliation(s)
- Yuhang Zhang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tat Cheung Cheng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | - Qingyi Lu
- Beijing University of Chinese Medicine, Beijing, China
| | - Marius D Surleac
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Jeffrey D Mandell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Pierre Pontarotti
- Aix Marseille Univ IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France.,Centre National de la Recherche Scientifique, Marseille, France
| | - Andrei J Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Anlong Xu
- Beijing University of Chinese Medicine, Beijing, China. .,State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
48
|
Krupovic M, Makarova KS, Wolf YI, Medvedeva S, Prangishvili D, Forterre P, Koonin EV. Integrated mobile genetic elements in Thaumarchaeota. Environ Microbiol 2019; 21:2056-2078. [PMID: 30773816 PMCID: PMC6563490 DOI: 10.1111/1462-2920.14564] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
To explore the diversity of mobile genetic elements (MGE) associated with archaea of the phylum Thaumarchaeota, we exploited the property of most MGE to integrate into the genomes of their hosts. Integrated MGE (iMGE) were identified in 20 thaumarchaeal genomes amounting to 2 Mbp of mobile thaumarchaeal DNA. These iMGE group into five major classes: (i) proviruses, (ii) casposons, (iii) insertion sequence-like transposons, (iv) integrative-conjugative elements and (v) cryptic integrated elements. The majority of the iMGE belong to the latter category and might represent novel families of viruses or plasmids. The identified proviruses are related to tailed viruses of the order Caudovirales and to tailless icosahedral viruses with the double jelly-roll capsid proteins. The thaumarchaeal iMGE are all connected within a gene sharing network, highlighting pervasive gene exchange between MGE occupying the same ecological niche. The thaumarchaeal mobilome carries multiple auxiliary metabolic genes, including multicopper oxidases and ammonia monooxygenase subunit C (AmoC), and stress response genes, such as those for universal stress response proteins (UspA). Thus, iMGE might make important contributions to the fitness and adaptation of their hosts. We identified several iMGE carrying type I-B CRISPR-Cas systems and spacers matching other thaumarchaeal iMGE, suggesting antagonistic interactions between coexisting MGE and symbiotic relationships with the ir archaeal hosts.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015, Paris, France
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Sofia Medvedeva
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015, Paris, France.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Sorbonne Université, Collège doctoral, 75005, Paris, France
| | - David Prangishvili
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015, Paris, France
| | - Patrick Forterre
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015, Paris, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris- Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
49
|
Corel E, Méheust R, Watson AK, McInerney JO, Lopez P, Bapteste E. Bipartite Network Analysis of Gene Sharings in the Microbial World. Mol Biol Evol 2019; 35:899-913. [PMID: 29346651 PMCID: PMC5888944 DOI: 10.1093/molbev/msy001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extensive microbial gene flows affect how we understand virology, microbiology, medical sciences, genetic modification, and evolutionary biology. Phylogenies only provide a narrow view of these gene flows: plasmids and viruses, lacking core genes, cannot be attached to cellular life on phylogenetic trees. Yet viruses and plasmids have a major impact on cellular evolution, affecting both the gene content and the dynamics of microbial communities. Using bipartite graphs that connect up to 149,000 clusters of homologous genes with 8,217 related and unrelated genomes, we can in particular show patterns of gene sharing that do not map neatly with the organismal phylogeny. Homologous genes are recycled by lateral gene transfer, and multiple copies of homologous genes are carried by otherwise completely unrelated (and possibly nested) genomes, that is, viruses, plasmids and prokaryotes. When a homologous gene is present on at least one plasmid or virus and at least one chromosome, a process of "gene externalization," affected by a postprocessed selected functional bias, takes place, especially in Bacteria. Bipartite graphs give us a view of vertical and horizontal gene flow beyond classic taxonomy on a single very large, analytically tractable, graph that goes beyond the cellular Web of Life.
Collapse
Affiliation(s)
- Eduardo Corel
- Unité Mixte de Recherche 7138 Evolution Paris-Seine, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Sorbonne Université, Université Pierre et Marie Curie, Paris, France
| | - Raphaël Méheust
- Unité Mixte de Recherche 7138 Evolution Paris-Seine, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Sorbonne Université, Université Pierre et Marie Curie, Paris, France
| | - Andrew K Watson
- Unité Mixte de Recherche 7138 Evolution Paris-Seine, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Sorbonne Université, Université Pierre et Marie Curie, Paris, France
| | - James O McInerney
- Chair in Evolutionary Biology, The University of Manchester, United Kingdom
| | - Philippe Lopez
- Unité Mixte de Recherche 7138 Evolution Paris-Seine, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Sorbonne Université, Université Pierre et Marie Curie, Paris, France
| | - Eric Bapteste
- Unité Mixte de Recherche 7138 Evolution Paris-Seine, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Sorbonne Université, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
50
|
Wright AV, Wang JY, Burstein D, Harrington LB, Paez-Espino D, Kyrpides NC, Iavarone AT, Banfield JF, Doudna JA. A Functional Mini-Integrase in a Two-Protein-type V-C CRISPR System. Mol Cell 2019; 73:727-737.e3. [PMID: 30709710 PMCID: PMC6386590 DOI: 10.1016/j.molcel.2018.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/21/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas immunity requires integration of short, foreign DNA fragments into the host genome at the CRISPR locus, a site consisting of alternating repeat sequences and foreign-derived spacers. In most CRISPR systems, the proteins Cas1 and Cas2 form the integration complex and are both essential for DNA acquisition. Most type V-C and V-D systems lack the cas2 gene and have unusually short CRISPR repeats and spacers. Here, we show that a mini-integrase comprising the type V-C Cas1 protein alone catalyzes DNA integration with a preference for short (17- to 19-base-pair) DNA fragments. The mini-integrase has weak specificity for the CRISPR array. We present evidence that the Cas1 proteins form a tetramer for integration. Our findings support a model of a minimal integrase with an internal ruler mechanism that favors shorter repeats and spacers. This minimal integrase may represent the function of the ancestral Cas1 prior to Cas2 adoption.
Collapse
Affiliation(s)
- Addison V Wright
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joy Y Wang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David Burstein
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lucas B Harrington
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David Paez-Espino
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Nikos C Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Anthony T Iavarone
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Gladstone Institutes, San Francisco, CA 94158, USA.
| |
Collapse
|